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On guantum Lie algebras and quantum root systems
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Abstract. As a natural generalization of ordinary Lie algebras we introduce the concept of
quantum Lie algebras, (g). We define these in terms of certain adjoint submodules of quantized
enveloping algebra#/, (¢) endowed with a quantum Lie bracket given by the quantum adjoint
action. The structure constants of these algebras depend on the quantum deformation parameter
g and they go over into the usual Lie algebras whes 1. The notions of-conjugation and
g-linearity are introduced.g-linear analogues of the classical antipode and Cartan involution

are defined and a generalized Killing forgilinear in the first entry and linear in the second, is
obtained. These structures allow the derivation of symmetries between the structure constants
of quantum Lie algebras. The explicitly worked out exampleg ef si3 andsos illustrate the

results.

1. Introduction

Lie algebras and their associated root systems play a pervasive role in the theory of classical
integrable models. The great breakthrough in the quantization of these models has been the
realization of the importance of the quantized enveloping algebras associated with these Lie
algebras [16, 11, 12, 14]. With the help of these quantized enveloping algebras it has been
possible to derive many exact results for the full quantum theories.

In this paper we will deal not with the quantization of the enveloping algebras of Lie
algebras but with the quantization of the Lie algebras themselves. Given the fact that most
of the properties of classical integrable models are described by the structure of Lie algebras
rather than their enveloping algebras, it is worthwhile to attempt to describe the quantum
integrable models with quantum Lie algebras instead of quantized enveloping algebras. In
section 2 we will describe the particular examples of quantum integrable theories which
motivated this work.

A Lie algebrag is naturally embedded into its universal enveloping algdb¢a) as a
submodule with respect to the adjoint action. The Lie brackeg anthe restriction of the
adjoint action ofU (g) to this submodule.

In the quantum case we are given the quantized enveloping aldélgn and its
quantum adjoint action on itself. We study those submodule&,6¢) which under the
guantum adjoint action transform as the adjoint representation, following a remark in [20].
We endow these modules with the quantum Lie bracket induced by the quantum adjoint
action. The resulting algebras are not all isomorphic. But among them there are always
distinguished ones which share further important properties with their classical counterparts

1 On leave of absence from: Department of Physics, Bielefeld University, Germany

i E-mail address: delius@mth.kcl.ac.uk ; World Wide Web: http://www.mth.kcl.ac.uk/"delius
§ E-mail address: aha@mth.kcl.ac.uk

0305-4470/96/081703+20$19.5@C) 1996 IOP Publishing Ltd 1703



1704 G W Delius and A Hffmann

and it is these which we study in detail in this paper. The precise definition of these quantum
Lie algebras is contained in definition 3.

There is a different approach to the quantization of Lie algebras present in the
literature. It is based on the notion of bicovariant differential calculus on quantum groups
[35,3,4,18,2,27,28,30]. The resulting structures are braided Lie algebras as discussed
by Majid [23]. Their shortcoming is that they do not have the same dimension as the
corresponding classical Lie algebras except in the cage=of!/,. For a discussion of this
problem see [31]. For the case @t si, this problem has recently been solved by Sudbery
and Lyubashenko [32].

This paper is structured as follows. In section 2 we briefly mention the features of
affine Toda quantum field theories which motivated our search for a quantum deformation
of Lie algebras and root systems. This section is included purely as a motivation. Section 3
contains some necessary preliminary material on Lie algebras and on quantum enveloping
algebras. In order to introduce the concept of quantum Lie algebras we give in section 4
the very simple example of,(sl;). In section 5 we give the beginnings of a general
study of the structure of quantum Lie algebras. The standard tools provided by the general
structure of quantum groups are complemented with the notiogp-@dnjugation. It is
this construction that allows us to exploit a generalization of the classical Killing form,
defined in section 5.3, to obtain the analogue of the Weyl canonical form of a Lie algebra
in section 5.4. Relations and symmetries of the structure constants of the quantum Lie
algebras in this basis are derived in section 5.5 and the quantum root space is investigated
in section 5.6.

Finally the structure constants for the quantum Lie algebras associated with the Lie
algebrasa, (= sly) andc; (= sp(4) = so(5)) are given in section 6. The calculations
were done on a computer usindathematica[34]. The results were obtained without
using the general results of section 5 on the structure of quantum Lie algebras but are of
course found to be in agreement with them. By the same methods we have also obtained
the explicit results for the quantizations of the Lie algeb#gs= sl; and g,. All the
explicit calculations and results are available in the formMethematicanotebooks at
http://www.mth.kcl.ac.uk/"delius/g-lie.html on the World Wide Web.

The straightforward determination of the expligitdependent structure constants of
quantum Lie algebra€,(g) is extremely tedious. We have therefore recently described
a general method for obtaining them from tRematrix of U,(g) [8]. This method had
independently and earlier been derived in the formalism of differential calculus on quantum
groups, see, e.g., [27]. However, in [8] it is appliedgte= gl, andg = si, for all n. The
paper [9] establishes the existence and uniqueness of the quantum Lie algebras discussed
here.

2. Physical motivation

We want to start by giving the physical motivation which has led us to undertake the present
study of quantum Lie algebras and quantum root systems. This section is meant purely to
give our motivation and is in no way needed in the rest of the paper.

This work has grown out of our desire to understand the exact results which have
been obtained in quantum affine Toda theories. In these theories it has been possible to
obtain the full quantum mass ratios and the ex&aohatrices for the fundamental particles
[5,7]. Furthermore, Dorey [10] has found an elegant description of these results in terms
of properties of the root systems of the underlying Lie algebras. While this description is
exact for the cases where the affine root system is self-dual, the true quantum results in
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the case of non-self-dual root systems require certain deformations, with the deformation
parameter depending on the product of Planck’s constant and the coupling constant [7].

It is tempting to conjecture that the systematics of these deformations might be
understandable in terms of the quantum root systems of quantum Lie algebras. However,
a concept of quantum root systems associated with quantum Lie algebras has, to our
knowledge, never been studied in the literature.

Affine Toda theories are massive integrable two-dimensional relativistic field theories
described by the Lagrangian density

2
L[] = b (3.0, 0" 9) + %b (2% 2 y) 2.1)

where the bosonic fieléh takes its values in the Cartan subalgebra of a simple Lie algebra
g, m? is a mass scald is the coupling constant, ard ., .) is the Killing form ong. The
z41 are cyclic elements of which in a standard notation can be expressed as

1= Z \/%xa i-1= Z \/’Taxfa (22)
aeA aceA
where A is the setA of simple roots extended by the ro@g which is minus the highest
root (or the highest short root in the case of twisted Toda theories).nJtae the Kac
labels defined so thai,, = 1 and)_,_zn.o = 0. The classical masses of the fields can
be read off the Lagrangian and their squares are found to be the eigenvalues of the matrix
(written in terms of some basi#;} of the Cartan subalgebra)

M5 =" ngalh)alhy). (2.3)
acA
The equivalent characterization of the squares of the masses is as the eigenvalues of the
adjoint action ofziz_1 on the Lie algebra or as the length squared of the projections
of certain roots into the lowest eigenspace of the Coxeter element of the Weyl group.
Numerically this typically leads to values (slight modifications depend on the particular Lie
algebrag)

2 262 9
m? = 8m?sir? o h= Zna (2.4)
aeA
wherea is the integer labelling the particle ardis the (twisted) Coxeter number gf

In the quantum theory these masses receive quantum corrections. However, when the
dust settles, it turns out that the exact quantum masses are still given by the formula in (2.4)
but with the Coxeter number replaced by a ‘quantum’ Coxeter numh&r When the set
A is self-dual (i.e. ifY o € A also 2/a? € A) this quantum Coxeter numer is equal to its
classical value but in the non-self-dual case it is coupling constant dependent in the generic
form

B%h/2x
1+ B2%h/4x
wherec depends on the particular Lie algebra. Will it be possible to find a quantum Lie
algebraic explanation for these mass formulae? In particular, is there a natural definition of
a quantum Coxeter number?

The factorizedS-matrices for the fundamental particles of affine Toda theories have
been exactly determined by solving the equations arising from the bootstrap principle
[5,7]. Dorey [10] found that solutions to these very stringent bootstrap equations could
be constructed by using the properties of the root systems of Lie algebras. These solutions
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describe theS-matrices of the self-dual Toda theories. They have the special property
that the locations of the poles do not dependrorin addition to Dorey’s solutions there

is another set of solutions in which the pole locations depend timrough the quantum
Coxeter number. These solutions give wnatrices of non-self-dual Toda theories. Can

the reason for the existence of these solutions be understood in terms of the properties of
guantum root systems?

3. Preliminaries

For background on Lie algebras see [26], for example. 4.dte a simple complex Lie
algebra of rank-, R the set of non-zero roots and, ay, ..., «, its simple roots. Let
b:g® g — C be the Killing form. Choose a baslg, /5, ... h, for the Cartan subalgebra
H so thatb(h;, h) = a;(h) Y h € H. Choose root vectors, so thatb(f,, ) = —1.
Then the Lie bracket relations take the Weyl canonical form

[hiy %ol = —[Ra» hi] = a(h) R4 [hi,hj]=0
[Re, o] = —hq where if o= ko; then h, =Y kbh; (3.1)
[Xo. Xg] = Nu.p Xatp for B#—a and o+ B €R.

The N, 4 are real numbers which can be determined entirely in terms of the root system.
The scalar product on the root lattice is defined by

«- B Eb(ﬁa,ﬁﬁ) = alhy) . (3.2)

The Weyl canonical basis is related to the Chevalley canonical basis by

[ 2 2 .
Xtg = + ﬂ xAia hi = ﬂhl . (33)

In the Chevalley basis all structure constants are integers. To generate the Lie algebra it is
sufficient to consider the simple root vectar$ = x.,,. The relations are then
+ + —
[hl', hj] =0 [hi,xj :| = :I:a,jxj [xi*',xj ] = aijhj (34)
adx;) " (x) =0 if i,

The last relations are the Serre relations. The adjoint action is defined by the Lie bracket
adx)(y) =[x, y] anda;; = 20; - o /at; - @; is the Cartan matrix.
The universal enveloping algebia(g) is the unital associative algebra ovErwith

generators;;”, x;, h;, 1<i < r and relations (3.4) in which the Lie bracket is replaced
by the commutator. The quantized eveloping algdiifég) is an algebra ove€[[A]], the
ring of formal power series in the indetermindtewith the same set of generators but with
the deformed relatioris

[hi, hj] = 0 I:hl', in] = :I:a;jxji

[x_+ x.,] _s. g —q; " (35)

[ ij -1
qi — 4q;

1 We have found [6] to be a generally reliable reference on quantum groupSc,.jDime related to thé(l.i of [6]

by x;" =k, /2X; andx;” = X; k2.

i i
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and the quantum Serre relations
1—£l,'j

Z(—l)k[ 11&”] @O EHT =0 i (3.6)
k=0 qi

Here[(Z)]q are theg-binomial coefficients. We have defingd= &’” whered; are coprime
hi

integers such that;q;; is a symmetric matrix. We will use the notatiagn= ¢, and then
the relations (3.5) take the form

+,-1 *a;; + + - ki _kfl
kikj = kjki kixj ki =q; xj I:Xi ,Xj ] = 8ij i — q,_l . (37)

Note the technical point that in this paper we do not work with some rational tdy(g)
but always with the algebr&),(¢g) defined overC[[4]]. Indeed it can be seen from the
example ofg = a, that in general our quantum Lie algebras do not exist in the usual
adjoint rational form but that one would have to use #imply-connectedational form.

The Hopf algebra structure @f;,(g) is given by the comultiplication

Ah)) =h; ®1+1®h; (3.8)

AGH =x" @4 +q7 " @ xF (3.9)
the antipode

S(hi) = —h; S(xF) = —g*txF (3.10)
and the counit

e(h;) = e(x) = 0. (3.11)
The antipode does not square to the identity but rather

S2(a)=uau?t with u=q? (3.12)

whereg = €' and#, is the element of the Cartan subalgebra determined(by, h) =
p(h) Y h € H with p being half the sum of the positive roots.
The Cartan involutior® is given by the same formulae as in the classical case

OO =xF  Oh) = —h; . (3.13)
It is an algebra automorphism and a coalgebra anti-automorphism
ABO=0®0) AT S-0=6-51. (3.14)

If the Dynkin diagram ofg has a symmetry which maps nodé into nodez (i) then the
Lie algebrag has an automorphism

T = x5, T(hi) = hey (3.15)

which extends to a Hopf-algebra automorphism (§f(g). Such r are refered to as
diagram automorphisms and except for rescalings oﬁcfhmey are the only Hopf-algebra
automorphisms ot/ (g).

The adjoint action oU,,(g) on itself, using Sweedler’s notation [33], is given by

Xoy= Zx(l) y S(x@) x,y € Uy(g). (3.16)
There is a second adjoint actiendefined by
Xxey= Zx(z) y S Hxw) . (3.17)

The Cartan involutiord and the antipodeS respect the adjoint actions in the sense of
[6(a) #8(b)] =0 ([aob]) and [S(a) e S(b)] = S([S~L(a) o b)) for all a, b € U,(g).
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4. The example ofsl,

As an introduction to the idea of a quantum Lie algebra it is useful to consider the very
simple example ofl,. The quantized enveloping algehlg(s/;) is generated by the three
generators:, x*, x~ and the commutation relations
g =g

g—q7t
Thus these three generators do not close to form a Lie algebra because the right-hand side
of the second equation is non-linear. Of course one would not expect them to do so. In
the quantum case the commutator, which describes the classical adjoint action, should be
replaced by the quantum adjoint action described in (3.16). In general the adjoint action on
anya € Uy(g) is given by

hoa =[h,a] xFoa=xFaqg™?—¢gWE g x* (4.2)

and this produces the commutator only fore= 1. The generators, x* do not close even
under the quantum adjoint action. However, the elements

[h, x%] = £2x* [x, x7] (4.2)

Xt = g2x* H=qg W% x —gxx* (4.3)
do. Indeed, their adjoint actions on each other can be easily calculated to be given by
[HoX']=1+q5X* [XToH] =—-1+4¢)X"
[HoX ]1=—-1+¢HX" [X"oH]=A+qg )X
(4.4)
[XtoX|=H [X~oX*]=-H
[HoH]l=(qg?-q¢HH [X*oX*]=0.

We use the bracket notation for the quantum adjoint action to indicate that we now view
it as the quantum analogue of the Lie bracket. The algebra in (4.4) is the quantum Lie
algebral, (sly). Its structure constants agedependent in such a way that it goes over into
the classicakl; Lie algebra forg = 1.

The simplicity of this example is deceptive. For any Lie algebra other tfaithe
associated quantum Lie algebra is much more complex. We give other examples in section 6.

5. General structure

It is now our aim to make some general statements about the structure of quantum Lie
algebras and to derive symmetries between their structure constants.

5.1. g-conjugation

An important role is played in our general study by the concept-obnjugation.

Definition 1. (a) g-conjugation~: C[[2]] — C[[A]], a +— a is the ring automorphism
defined byh = —h.
(b) Let M, N be C[[Ah]]-modules. A mapp : M — N is g-linear if

p(ha) = xo(a) YaeM,xreC[[h]. (5.1)

(c) Let A, B be algebras ovefC[[#]]. A g-linear map¢ : A — B is an algebrag-
homomorphisnif it respects the algebra product, i.eVifa,a’ € A, ¢(aa’) = ¢(a) p(a’).
g-anti-isomorphismsg-automorphisms, etc, are defined analogously.
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Note the analogy between the conceptsg afonjugation and complex conjugation and
betweeng-linear maps and anti-linear maps.

Definition 2. g-conjugationon the quantum group/,,(g) is the algebraj-automephism
~: Up(g) — Uy(g) that extendsy-conjugation onC[[%]] by acting as the identity on the
generators® and#h;.

This definition is consistent because the relations (3.5) and (3.6) are invariant under
g — ¢~1. The notion ofg-conjugation has already been introduced in [13].
Defining a tilded Cartan involution and a tilded antipode as compositions

S=~.§ 6 =~-6 (5.2)

the concept ofj-conjugation proves to be useful as we have the following lemma.

Lemma 1. (a) g-conjugation is a Hopf algebra-isomorphism~: U,(g) — U,(g)°P, in
particular

€ ~=r~ . € A ~=~ AT S ~=~.S1, (5.3)

(b) g-conjugation relates the adjoint actions as

—

deb=aobh Ya,beUg). (5.4)
(c) 6 : Uy(g) — U,(g) is a Hopf algebraj-isomorphism, especially

6(a) o 6(b) = 60(aob) Ya,beUg). (5.5)
(d) S : Uy(g) — U,(g) is an algebraj-anti-isomorphism such that

S(a) o S(b) = S(S7X(a) o b) Va,beUlg). (5.6)

5.2. Quantum Lie algebrasn(g)

A Lie algebrag is naturally embedded into its universal enveloping algébgg). It forms a
subspace of the enveloping algebra which under the adjoint action transforms in the adjoint
representation and the adjoint action restricts to the Lie bracket. As a starting point it is
natural to define a quantum Lie algebfa(g) as a submodule of the quantized enveloping
algebraU;,(g) with the analogous property. The following definition additionally requires
that a quantum Lie algebra be invariant undesS andr, as this is not guaranteed by the
classical limit itself.

While a modification of the following definition would also be appropriate in the case
of Kac—Moody algebras, in this paper we have the case of finite-dimensional Lie algebras
in mind.

Definition 3. A quantum Lie algebral,(g) associated with a finite-dimensional simple
complex Lie algebrag is a finite-dimensional indecomposabtesubmodule ofUj,(g)
endowed with theuantum Lie brackefa o b] = a o b such that

() L£,(g) is a deformation ok, i.e. £, (g)ln—0 = &.

(i) £,(g) is invariant unded, S and any diagram automorphism
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An immediate consequence of this definition is that, under the adjoint actibh (gf,
L, (g) transforms as the adjoint representation. The structure of this representation is well
known. As is the case with all finite dimensional highest-weight representatiotis(9j
[24,21], it is just a deformation of the corresponding classical representation. It follows in
particular that’, (g) splits into submodules of definite weight

Li(g) =P Lo ® Lo hoay =a(h)ay Y ay € Lo (5.7)
a€R

where the dimension ofg is equal to the rank of and the£, are one-dimensional for
any roote of g. (5.7) defines a grading of the quantum Lie algebi&; d £4] € Lq4p. We
will refer to Lo = 'H as the Cartan subalgebra and to the elemeni,dds root vectors.

We choose some badiX,|¢ € R}U{H;|i = 1...rank(g)} for the quantum Lie algebra
Ly(g) so thatX, € L,, H; € H. Because of the grading (5.7) the Lie bracket relations of
Ly (g) are restricted to take the form

[Hi o) Xa] = la(Hi) Xa [Xa [e) H,] = —ra(H,-) Xa
[H; o Hj] = f;;* Hi [Xa o X o] =—Hy € Lo (5.8)
[XaOXﬂ]ZNa/gXDH_ﬂ for B # —«a and a+pBeR.

This is similar in form to the classical relations (3.1). There are, however, some crucial
differences. Because the quantum Lie bracket is not antisymmetric, there are two sets of
roots, the ‘left’ rootd,, and the ‘right’ roots,. Furthermore these roots are now not valued

in C but in C[[A]]. Similarly the constantsV, s and f;;* are elements of[[4]]{. Note

also that H; o H;] can be non-zero.

The requirement of invariance df,(g) underd, S andr is not empty. Already the
example ofg = ay, treated in section 6.1, exhibits a whole family ©@f(g)o-submodules
which satisfy the first part of definition 3 but not the second. However, given any non-
invariant U, (g)o-submodulel; (g)o C U,(g) satisfying the first part of the definition, a
symmetrization with respect t, S and r is always possible. To see this, fix a highest-
weight stateyr € £,(g)o and choose a lowest-weight state= P (x~) o ¥, P(x~) being
a monomial in the generators . 6(Ly(g)o) satisfies the first part of the definition as
well. Fix a highest-weight stat¢/’ € 6(L;,(g)o) by requiringé(y’) = ¥ and define
U = P(x7)oy'. Thend(y) = ay’ with some 0# « € C[[h]]. The equalities
v =aPxHPx ) oy andy’ = aP(x)P(x~) oy imply « = @. Due to the classical
limit « has a square root. Renormalizi@gx*) = J&P(xi), db=v,p=0x)og,
¢ = Jay' and¢’ = Q(x7) o ¢’ leads tod(¢) = ¢’ andb(¢) = ¢. ¢1 = y¢ + v’
satisfiesd (¢1) = Q(x7) o ¢1 for 0 £ y € C[[h]] arbitrary but fixed.

Note that the above construction goes through under the additional requiréent =
g~ %) 0(x™), wherex is the highest root. This mear(Q(x™)) = Q(x~). Now let
$2 = ¢1 — S(¢) to find S(¢2) = —¢» and, using (5.6)F(¢2) = Q(x7) o ¢, as desired.
Hence, £,(g) = U,(g) o ¢ is a quantum Lie algebra. In the case there is a diagram
automorphisnt it is possible additionally to symmetrize with respectrtor then restricts
to an automorphism of the resulting quantum Lie algebra.

Whenever there exists more than one quantum Lie algebra associated with the same
Lie algebrag, then there exist also whole families of ‘almost’ quantum Lie algebras which
satisfy the first part of the definition but are not invariant unéle€onsider the situation of

1 It will usually be possible to treat as a numeric deformation parameter and then to work @veHowever,
before doing this it is clearly necessary to verify that all occuring power seriésconverge for a certain range
of values forh.
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two quantum Lie algebras with highest-weight statesy, such thaﬁ(wj) = Q(x7) oy,
Jj = 1,2. (An example for this situation is provided lay.) For«, 8 € C[[A]] construct
the orbit U, (g) o (a1 + Br2). Fromb(ays + By2) = Q(x7) o (@1 + Byr) it follows
that U, (g) o (@1 + Bvr2) is 6-invariant only ifs = (%)

It had been observed already in the context of the bicovariant differential calculus that
guantum Lie algebras are not left invariant by the antipode, see [29] for a discussion. We
have just shown, however, that it is always possible to find quantum Lie algebras that are
invariant under the combined action of the antipode g@ubnjugation. This invariance will
be crucial in the developments to follow.

There always exists a quantum Lie algelitgg) associated with any simple complex
Lie algebrag. Furthermore, al,(g) associated with the sangeare isomorphic as algebras.
This has been shown in [9].

5.3. Killing form

The Killing form plays a crucial role in the structure theory of Lie algebras. Itis a symmetric
bilinear form on the Lie algebra and its crucial property is the invariance under the adjoint
action. We define a quantum analogue as follows.

Definition 4. The quantum Killing formis the mapB : £, (g) ® L,(g) — C[[#]] given by
B(a,b) = — Trag (S(a) b u) . (5.9)

Here Trg denotes the trace over the adjoint representationuarsdthe element o/, (g)
expressing the square of the antipode as in (3.12).

This definition goes over into the classical Killing forinin the classical limit £ = 0).
From the non-degeneracy of the classical Killing form the non-degeneracy of the quantum
Killing form follows. The analogue of the ad-invariance for the quantum Killing form is

B(a,cob) = B(S(c) oa, b) (5.10)

which can be straightforwardly derived from the definition.

Note that our quantum Killing form o (g) is not the restriction of the usual Killing
form R on U, (g) first defined by Rosso [25]. The ad-invariance of the latter is expressed
in terms of theU, (g) coproduct:}" R(x@y oy, x@ 0z) = €(x) R(y,z) ¥V x,y,z € Uy(g).

This is not useful for our purposes because thég) coproduct leads out of the quantum
Lie algebral;(g).

The quantum Killing form isz-linear in its first argument and linear in the second, i.e.

for any A € C[[A]]

B(Ab,a) = » B(b,a) B(b,ra) = A B(b,a). (5.11)
The quantum Killing form is not symmetric. However, itgssymmetric in the sense that
B(b.a) = B(a.b) (5.12)
In addition we have the following two relations
B(b,a) = B(S(a), S(b)) (5.13)
= B#(a),0(b)). (5.14)

To derive these relations one has to realize that the duahffrag - 6 and~ -m,q ~ are
all related to the adjoint representatiagy; itself by similarity transformations.
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5.4. Weyl canonical form

Proposition 2. It is possible to choose a badi¥,|a € R} U {H;|i = 1...rank(g)} for
Ly (g) with the properties

B(Xy, X_o) = —1 (5.15)
0(Xa) = X_q 0(H)) = —H; (5.16)
S(Xe) = —q "% X, S(H;) = —H; . (5.17)

Proof. In the following we will have to invert and to take square roots of elements of
CI[A]]- While this is not in general possible, it presents no problem for those formal power
series which have a non-vanishing classical limit.

It is clear by (5.10) thaB(X,, Xg)  8u4p0. We can choose the scale of thg for
positivea so thatB(X_,, X,) = —1. By the symmetry property (5.12) of the Killing form
the normalization (5.15) then holds for all

The most general action @f on X, is, for reasons of weight§(X,) = f(, —a for
some f, € C[[A]]. Since 62 = id and ~ commutes withd we haveX, = f,f oX
ie. f71= f, for all a. If we rescale theX, by f,/* both (5.16) and (5.15) hold. In
particular, theX, are determined up to sign by (5.15) and (5.16).

The most general action of on X, is, again for reasons of weigh$(X,) = s Xq
for somes, € C[[A]]. Hence X, = S71- S(Xy) = 545(Xa) = $u5aXa, €. 5,1 = 5.
Furthermore,S -6 - S = 0 and (5.16) implys_, = s, . Finally, (3.12), (5.11) and (5.13)
lead to 1= —B(X_,, Xo) = —B(S(X,), S(X_4)) = 50 5_o ¢~ 2. Hences? = g%, The
sign in (5.17) is determined by the classical linit£ 0).

We construct the basis states for the Cartan subalggbaa follows

Hi=3(q""[X-a, 0 Xe,] — ¢ " [Xe, 0 X_g,]) - (5.18)

Then, using (5.4) and (5.5)/(H;) = —H; follows. The relationS(H;) = —H; follows
from B(X_q,[H; o Xo]) = B(0(H)) o 6(X)],0(X-)) = —B([H; o X_,], Xa) =
—B(X_q, [S(H;) o X,]). At h = 0 the H; defined above are equal to the of the usual
Weyl canonical form of (3.1). This shows that tli& are linearly independent and thus
give a basis of the Cartan subalgelta O

Remark. Note that theH; are not unique. For example, every choille = %(y,»H,ai
—77,»Ha,.) with 0 # y; € C[[h]] such thaty; + hC[[h]] = 1+ hC[[A]] is possible.
If ¢ has a diagram automorphism theracts as

T(X ) T(a) T(H,') = Hr(i) toy = +1 (519)
where the signg, are the same as in the classical case.

Proof. For reasons of weight(X,) = ty X;@« for somet, € C[[h]]. From
B(X_y, Xy) = B(t(X_y), T(Xy)) = I_gta B(X_q, Xo) it follows that7_,t, = 1. From
6(t(X_a)) = T(6(X_y)) it follows that7 , = 7,. Together this gives? = 1 and thus

= +1. The action orH; follows from (5.18) and the choicg, = 1. O
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5.5. Relations between structure constants

We are now ready to derive relations between the various structure constants appearing in
(5.8) when using the basis of proposition 2. From the isomorphism property (5¢yvef

obtain an expression of the quantum roots for negatiwe terms of the quantum roots for
positive o:

—_~—

[G(H) 00(X_)] =0((Hi 0 X—o]) = [o(H)=—l,(H) Va,i (5.20)
[0(X_a) 0 B(H)] = 0(X_wo H]) = r_o(H)=—ry(H)  Ye.i. (5.21)

Thus, unlike in the classical case, the negative of a left quantum root is not a left quantum
root again, but the-conjugated negative is. Idem for right quantum roots. We also obtain
relations for the structure constantsand f:

[0(Xe) 00(Xp)] =0([Xq0Xgl) = Nup=N_o_p Va,p (5.22)
[6(H) 0 6(H)] =6(H; 0o H]) = fi;5=—f* Vi, jk. (5.23)

From the ad-invariance (5.10) of the quantum Killing form we obtain the characterization
of the Cartan subalgebra elemetifs in terms of the right roots

— B(Hy, H) = B([Xq 0 X_4], H) = B(X_q, [S(X,) 0 H])
=B(X_y,—q "[Xq 0o H]) =q " “ry(H) Ya,VHeH. (5.24)

Because of the non-degeneracy of the Killing form these relations determitg, ingiquely
in terms of the roots. We also obtain further relations for the structure congtaatsl f:

B([S(Xa) 0 Xp]. X _a—p) = B(Xp. [Xo 0 X _ap])

= Ne-ap=—¢""Nap  Yap (5.25)
B((S(H)) o Hi], Hy) = B(H;, [Hjo Hl]) = > fi'Bu=—)_ fii' Bu (5.26)
where we have definest;; = B(H;, Hj). l l

There exists a quantum Lie algebra anti-automorphismZ, (G) — L;(g) acting on
the basis as

X(Xo) = —X_q Xx(H;) = H; . (5.27)
From the anti-automorphism property

[x(@) o x ()] = x([boa]) Ya,beLy(g) (5.28)
we obtain the relation between the ‘left’ and ‘right’ quantum roots

ly =—r_y Y (5.29)
and the relations

Nop=—N_pg 4 5= £t (5.30)

The proof that (5.27) defines an anti-automorphism of the quantum Lie algebras is contained
in [9].
If ¢ has a diagram automorphismthen this leads to further relations:

Feirein™® = fi* Nr),r(p) = talpla+pNap (5.31)

le@)(Hey) = 1o (H;) Fe@) (Hey) = 1o (H;)

Bz iyc(j) = Bij -

(5.32)
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5.6. Quantum root spaces

We have seen that a quantum Lie algebra posesses two sets of quantuni,raatsy,,
defined by

[H o Xy] = l,(H) Xq [Xy 0 H] = —ro(H) X, . (5.33)

The roots are linear forms on the Cartan subalgébraith values inC[[4]], i.e. they are
elements ofH*. If the quantum Lie algebra has the anti-automorphijsrof (5.27), then
the roots are related by, = —/_,, i.e. the set of right roots is just the negative of the set
of left roots.

From the Killing form on’H we construct a form orft{* in the usual way. With
any elementv € H* we associate the unique elemeHt € H satisfying v(H) =
B(H,, H) Y H € H. Note that this pairing ig-linear in the sense that the element of
H associated with v for somex € C[[4]] is not A H, butx H,. The form onH* is defined

by
(v, w) = B(H,, Hy,) Yoo, weH*. (5.34)

Because the Killing form ig;-linear in the first factor and linear in the second, the form
(., .)is linear in the first factor ang-linear in the second

(Av, w) = A{v, w) (v, A w) = Av, w). (5.35)

It is alsog-symmetric

—_~—

(v, w) = (w, v). (5.36)
From relation (5.24) we can read off, for example, that
(ra, 1) = ¢”“™" B(Hy. Hp) . (5.37)

In the classical case of complex Lie algebras one introduces a real #arrof the
Cartan subalgebra and on its dual spa&g which is a real vectorspace, the form induced
by the Killing form is a real, positive definite, bilinear form, thus givifg; the structure
of a Euclidean space. This is the root space.

We can imitate this construction for quantum Lie algebras. We defingjtheal’ form
Hgazy of the Cartan subalgebra as the module @®gr?]] spanned by thed;. We choose
R[[4?]] as the base ring because it consists of the element[éf]] which are invariant
under both complex conjugation ageconjugation. The roots, when restricted7;s2;,
still give values inR[[2]], and not inR[[A?]], and thus do not lie in(Hgguz)". The
g-symmetrized combinationg, = %(ra — r_q) do, however, give values iR[[4#?%]]. The
a; = a,, for all simple rootsy; form a basis fo""fﬂi[[hzu- On this basis the form is given by

(a[,aj) :B(H[,Hj) = Bij~ (538)

We see immediately that the form, .) restricted thf{{HhZ]] is a symmetric, non-degenerate,
bilinear form with values ifR[[/#?]].

We expect, however, that in an eventual axiomatic description of quantum root systems
the unrestricted form., .) will be used and that the fact that it is not symmetric and
bilinear but ratheg-symmetric and;-bilinear will play a central role.
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6. Explicit examples

We have explicitly constructed three examples of quantum Lie algebras, namely those
associated witly = ay, as, ¢ and withg,. The construction follows straightforwardly from
definition 3. We search for a highest-weight state inslitﬁ?(g) and impose a symmetry
constraint if appropriate. Then the corresponding orbit is constructed and explicitly tested
for the invariance properties required by the definition to be satisfied. The details for the
cases ofg = a, andc; are given below.

Rather than describe the quantum groups in terms of fundamental generators and their
relations, the selection of a PoinéaBirkoff-Witt (PBW) type basis is useful for explicit
computations. In the construction of such a basis with the help of the Lusztig automorphisms
[22] we follow the conventions of [6]; an alternative would be the approach of [19]. For
a reduced decomposition of the longest Weyl group elemgnt s;, ...s;, the quantum
root vectors are given by

e =Ty ... Ty o (X]) (6.1)

fo=Ty.. Ty (X)) (6.2)

Note thate, is a polynomial in{X;"} while analogouslyf; is a polynomial in{X;"}, although
this is not entirely obvious from the definition of the Lusztig automorphigims

6.1. Ln(ag)

a; = sl is the rank-2 Lie algebra with Cartan matrix

a=<_21 _21> ©3

It has a diagram automorphismwhich exchanges the two simple roots, iX; < X
andk; < k,. The quantum root vectors generating #sv basis which we use involve the
choicewqg = s15251:
e1 =X e2=—X{XJ +qtX;x] e3 =Xy 6.4)
fi=X1 fo=qX; X; —X; X1 fa=X; .
The diagram automorphism acts@®;) = es, T(e2) = —q tea— (1—g ?)eseq, T(e3) = e1.
In terms of thePBw basis it is straightforward to write down an ansdtzfor a highest-
weight state according to point (ii) of the definition 3. Once we restrict the ansat¥ for
to lie entirely inU7°, i.e. not to contain any;, we find two independent solutions of the
equationsy;” o ¥ = 0. With respect to the diagram automorphism these can be described
as a highest-weight state

Wt = ex(ky %k, % — g7 PR — (1= g P)esenk; PSP (6.5)
that is invariant under the diagram symmetry, while
W = ealky % 1 4 g7 ) + (L= g Pesenk; ok (6.6)

changes sign under the diagram automorphism. The (skew) invariangé dbllows by
means ofley, es], -+ = —e2. The symmetrization with respect toenforces the symmetries
required by the definition of a quantum Lie algebra.

We now observe that* vanishes in the classical limit — 1 whilst ¥~ reduces to
the highest root vector of the classical Lie algebra. He#iceis a desirable starting point
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for the construction of an adjoint orbit. The resulting orbit is in fact found to satisfy all the
requirements of definition 3. We then chose a quantum Weyl basis with the properties of
proposition 2. The explicit expressions for these quantum Lie algebra generators are listed
below to give the reader an idea about the form of these generators. Note, for example,
that the quantum Cartan subalgebra generators are not simple expressions:

O (62( VIS 4 YA (g1 g q—?’/zegelkl‘l“k;/"’)

X, = —iC (es(q¥2k; %M + g 2P0 + (471 = g 2o fuk*k; M)

Xy, = iC (el(ql/zkl_ Vo2 4 g VPSR — (7Y = @) g en faky oKD
+(g 7t — q)%q ¥ ?ezer faky 1/3k1/3)

1+513 2/3, -2/3 —2/3; +2/3 4/3,2/3 —4/3, -2/3
=C g (—akd*h; ™2 + kPSR = kG 4 gk V3,

+(1— )7 (+erfate s Vo7 + 4745
+q_4e f2k1 1/3 1/3 _ze 2 f3 k2/3k1/3)
—(1— ¢*3%q Pezer foky Y3y 1/3>

1+ _ _ _ _
H, = c? 2 _61 5 (—qkl 2/3k§/3 + k2/3k 2/3 kf/skg/s + qk; 2/3k2 4/3

- g7 (heafalg k2% + g U
bor s k1/3 B _ 2, flki/3k§/3)
+(1 = q¥% e f f1ky ky 1/3)
X_g =iC (f g2k Pk + g — @t = g Zesfzkf/sk;/s)
X oy = —iC (fa(q™ 2 % + g V) + (a7 = g)g e fold K5
(gt = %q YVer fa faky i 3)

X —C (f (q’1/2k2/3k4/3 p ’3/2k4/3 2/3) O ) k4/3 2/3)
—01—02 —
The normalization factor is
_ _ _ _ -1/2
C=(24+¢"Dq 2 +¢¥D @3+ - 1+q+¢%) 7. (6.7)

It could be absorbed into a different normalization of the quantum Killing form in (5.9).
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The left quantum roots are, using the notatiin= Y h; H;,
loy (H) =1((q" ¥+ ¢~ h1 — ¢"% 2)
ly(H) =1 (=¢"? ha+ (g7 + g% hy)
la+ar(H) = 1q~¥% (h1 + hp)
| = %Cz(q—1/2+q1/2)(q—3/2 _‘_qs/z)z'

(6.8)

The negative roots are obtained byconjugation according to (5.20). The right roots are
given according to (5.29). The roots are seen to be related by the diagram automorphism
according to (5.32).

The ¢g-conjugation-invariant roots, = %(ra + 1,) introduced in section 5.6 are

oy = 3 (@ 2+ 472+ 2+ 4% i — (a2 + P hy)
o, = SL(—(@Y2+ ¢ hi+ (@72 + g7 + ¢V + ¢¥) hy) (6.9)
Aasrar = 310G+ ¢%%) (h1 + ha) .
These have the classical properties
Ay + ag = Aotp d_q = —dy (6.10)

i.e. they form a root lattice. This interesting feature, which makes these root systems look
very similar to their classical counterparts, is true §oe a, for anyn [8], but is not true
for ¢, as we will see in the next section.
The Killing form on the Cartan subalgebra is given by the matBixwith entries
Bij = B(H;, H;) = (a;, aq,):

g+qt -1
B b( )
1 g+4q? (6.11)

b = % ((q—l/z+q1/2)2(q—3/2+q3/2)2) C2.

The pairwise equality of the elements is due to the diagram automorphism.
Once one has knowledge of the Killing form and of the roots, Afje which appear as
the result of K, o X_,], are determined by (5.24). In terms of tli& they read

Hy = a(—q¢ Y Hi+ (—¢** + ¢¥) H,)

Hy, = a((—¢"? +q* % Hy — g~ "7 Hy)

Hyyio, = —aq*(Hy + Ho)

H_o =a(¢"?Hi+ (g7? — g Hp) (6.12)
H_ o, =a((q"?—q ¥*Hi+q"? Hy)

H_ o, = aq *(Hy + Hp)

a = 2(q*3/2 + q3/2)71_

Note that the coefficients in the expansion of tHg are related to those i#/_, by ¢-
conjugation and sign change.
We need give only one of the structure consta¥its

Noyoo = (@ ?+4¢% C. (6.13)
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Through relations (5.25) and (5.30) all the other non-z€gg are related to this (note that
Notl,olz - Nal,ag):

Noy,—ar—as = —q Noy o, Noyay = = Noyay Noo,—ar—a = 4 Nay,a
Nvt1+012,*0t1 =dq Nﬂthvtz Na1+a2.*012 =-q Nal.vtz N*Otl.*dz = Nal.vtz
-1 -1
N_oy a1+, = =4 Naya N_o,a1+0; =4~ Noyar N_os,—ar = = Nayo
N =q'N, N =—q N,
—a1—ag,01 — 4 1,02 —a1—az,ay — — 4 1,02 ¢
(6.14)

This is confirmed by the results of the explicit calculations.
For the structure constanf;* for the Cartan subalgebra we find

ful=f2l=—f@?+q +1+q+4¢>

fr = fil=—f @t +9q)

fit = fal = filf = fa’ = f

= 3qY2 = V(g V2 4 Y222 4 g¥2) 2

(6.15)

6.2. Ln(C)

c2 =sp(@) = b, = so(5) is the rank-2 Lie algebra with Cartan matrix

a= ( _21 _22 ) (6.16)

It has no diagram automorphisms. With conventions analogous to the previous example
loy(H) =1((¢72 = 14437 h1 — ¢°h2)
loy(H) =1 (=@ =14 ¢Aq i+ (g7 + g % )
loyrar(H) =1 (@ = @)@ 2 =1+ ¢Dq % hi + g ho) (6.17)
Loy rar (H) = 1((q7% = 14 ¢%)g %)
I=3G+ %2 =1+ g% C?
ag,(H) =a (g2 =1+ ¢**h1— (g2 = 1+ ¢ hy)
oy (H) = a (—(q™2 = 1+ ¢*) ha+ (g2 + %) ha)
oty (H) = a (¢ = 9@ = 1+ ) ha + o) (6.18)
20y rap(H) = a ((g72 = 1+ ¢ a)
a=3(q " +q)C%
The normalization constant is
C=(@"+*@?*+dD@ +1+q)q - 1+q)

~1/2

x (@ 2=14+¢)@ g2 +1-¢°+4%) (6.19)
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Note that
201+, 7 Aoyt + oy - (6.20)

Thus, in contrast to the case gf= a,, these roots do not form a root lattice
The Killing form on the Cartan subalgebra is given by the matBixwith entries
Bl] = B(I_Il’ Hj) = (aO(,'7 aaj>:

q—2 _ 1+ q2 -1
B=b -2 2
-1 & (6.21)
q72 — 1+ 6]2
b=1(@q " +4¢H%qg*—14+4%% C*.
We find
— -1 -2 2
Nep=—(q  +q)(q  —1+qg)nup (6.22)

with theny g given in the following table. The rows are labelled d&yand the columns by

B.

201 +oar ait+or o o1 —0p  —0p —01—0ap —2001— o

2001 + a2 0 0 0 0 —q° 0 q? 0
a1 +ap 0 0 0 q q° -1 0 —q°
o 0 0 0 -4 0 0 1 0

o 0 -t ¢?* 0 0 0 —4° q°

—a1| g7 -2 0 0 0 4° —q 0

—otp 0 1 0 0 —¢?2 0 0 0
—ay—op | —g7? 0 -1 g3 gt 0 0 0
—201 — ay 0 g2 0 —¢? 0 0 0 0

(6.23)

In view of the relations given in section 5.5 the structure constants are fixed Ny ce
and Ny, +,+a, are given. Also because of these relations the above tahlamisymmetric
about the diagonal and antisymmetric about the opposite diagonal.
For the structure constanys;* for the Cartan subalgebra we find
fut=—f@?=1+¢D@G " —q?+3-¢*+4¢%
fr=—f@ =g +1-qg+¢D@ +q ' +1+q+4)

il =—f (@ ?+q)@ % —1+¢?

ft =—f @2 +4qHq@ 2 -1+¢H7" (6.24)
fi = fa’ = @2+ qDq 2 - 1447
fit=fat=f

f=-3q¢" 9@ +9*G@ % -1+9).

1 It is tempting to speculate that there may be a relation between the non-closure of the above root triangle and
the non-closure of some mass triangles in the affine Toda theory based on
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The quantum roots corresponding to the positive classical roots are represented by
Hy=d((—q*+q?=2+¢)Hi— (@ =) 2 +4¢(q > =1+ 4¢°)q " Hp)
Hyy=d(—(q " —q)¢° Hi— (q7> — 14 q¢*)q ' Hy)

Hoppo, =d ((—q 2 +1—2¢° —¢*) H1 — (47 — 1+ ¢°) Hy) (6.25)
Haura, = d (—(q 7% +¢))q Hi— (472 = 1+ ¢*)q Hp)

d=2(q '+ 2-1+4¢3)".

Again the corresponding expressions for negativare obtained byy-conjugating the
coefficients and changing the sign.

7. Discussion

We have shown that it is possible to develop a theory of quantum Lie algebras in terms of an
analogue of Weyl's canonical form and the resulting quantum roots and structure constants.
The key idea is the concept gfconjugation that allows us to explajt-linear analogues
of the antipode and the Cartan involution in connection with a generalized Killing form.
Objects similar to our quantum Lie algebras have been studied in the framework of
bicovariant differential calculus on quantum groups, see [2] for a very readable review.
There one considers the dual space to the space of left-invariant one-forms, which is a
o-submodule ofU,(g)t. The caseg = siz has been worked out explicitly in [1]. It does
not coincide with our quantum Lie algebig, (sl3) studied in section 6.1. In particular the
module of [1] is not invariant under the diagram automorphismigf
The g-conjugation~ acting onU,(g) which we have defined in definition 2 does not
restrict toL;,(g). We can, however, define a differeptconjugation onZ,(g).

Definition 5.  g-conjugation oLy(g) is theg-linear mapL,(g) — Li(g), a — a? which
extends they-conjugation~ on C[[%]] by acting as the identity on the basis elemekts
and H;.

The quantum Lie bracket:[o b] which we have defined through the adjoint action in
U, (g) is clearly not antisymmetric, i.ealo b] # —[b o a]. However, we have

Theorem 3. The quantum Lie bracket ig-antisymmetric in the sense that
[a?ob?] = —[boal? VYa,be L,(g) g=a,,c. (7.1)

This follows from combining the anti-automorphisp described in equation (5.27), with
the g-isomorphisnd: a? = —x (6(a)).

Our observations in this paper regarding the structure of quantum Lie algebras have
raised many new questions. Among them are the following:

e What is the origin of thej-antisymmetry (7.1) of the quantum Lie bracket? This has
recently been answered in [9].
o What are representations of quantum Lie algebras?

1 Rather than working with modules ové&l{[4]], people treaty = exp(k) as a number and work with vector
spaces ovet€ or R.
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e How can theg-symmetricq-bilinear form (., .) on the root space defined in (5.34)
be used to define ga-geometry on the root space? What aréVeyl ‘reflections’ with
respect to such a form? Can they be used to define quantum root systems axiomatically?
e Is there a connection to quantum affine Toda theory and other quantum integrable
models? These questions are under investigation.

Finally, we would like to draw the attention of the reader to the work of Sudbery and
Lyubashenko [32], which has appeared since the completion of this work. They also give
guantum Lie algebras fafl, and si3. For si3, however, they do not impose invariance
under the diagram automorphism.

For further information on quantum Lie algebras visit the quantum Lie algebra home
page on the World Wide Web at http://www.mth.kcl.ac.uk/"delius/g-lie.html.

Acknowledgments

GWD thanks the Deutsche Forschungsgemeinschaft for a Habilitationsstipendium. AH
thanks the EC for a Research Fellowship. We have profited greatly from discussions with
Mark Gould and Yao-Zhong Zhang which have led to the work in [8]. GWD thanks Ed
Corrigan and Patrick Dorey for discussions and hospitality during his visit to Durham.

References

[1] Aschieri P and Castellani L 1992 Bicovariant differential geometry of the quantum grdiyg3) Phys. Lett.
293B 299
[2] Aschieri P and Castellani L 1993 An introduction to noncommutative differential geometry on quantum
groupsint. J. Mod. PhysA 8 1667
[3] Bernard D 1990 Quantum Lie algebras and differential calculus on quantum gPoogsTheor. Phys. Suppl.
10249
[4] Bernard D 1991 A remark on quasi-triangular quantum Lie algeBtas. Lett.260B 389
[5] Braden H W, Corrigan E, DoseP E and Sasaki R 1990 Affine Toda field theory and esastatricesNucl.
Phys.B 338689
[6] Chari V and Pressley A 199A Guide to Quantum Group&ambridge: Cambridge University Press)
[7] Delius G W, Grisan M T and Zanon D 1992 Exac§-matrices for nonsimply-laced affine Toda theories
Nucl. PhysB 382365
[8] Delius G W, Hiffmann A, Goutl M D and Zhang Y-Z 1995 Quantum Lie algebras associatet, t@!,)
andU,(sl,) Preprint g-alg/9508013
[9] Delius G W and Goud M D 1996 Quantum Lie algebras, their existence, uniqueness;ardisymmetry
Preprint Kings College, London, KCL-TH-96-05
[10] Dorey P E 1991 Root systems and purely elastimatricesNucl. PhysB 358 654
[11] Drinfel'd V G 1985 Hopf algebras and the quantum Yang-Baxter equ&amn Math. Dokl32 254
[12] Drinfel'd V G 1986 Quantum groupBroc. Int. Congr. Math. (Berkeley) 798
[13] Drinfel'd V G 1990 On almost cocommutative Hopf algebt&sningrad Math. J1 321
[14] Fadeev L D, Reshetikhin N Yu and Takhtaja A 1987 Algebra Anal.1 178
[15] Gould M D, Links J and BrackeA J 1992 Matrix elements and Wigner coefficients &gy(gl,) J. Math.
Phys.33 1008
[16] Jimbo M 1985 Ag-difference analogue df' (g) and the Yang—Baxter equatidrett. Math. Phys10 63
[17] Joseph A 1994uantum Groups and Their Primitive Ideals (Modern Surveys in Mathematic$B23)in:
Springer)
[18] Jurco B 1991 Differential calculus on quantized simple Lie grougs. Math. Phys22 177
[19] Khoroshkn S M and Tolstg V N 1991 UniversalR-matrix for quantized (super) algebr&@mmun. Math.
Phys.141599
[20] Kirillov A N and Reshetikhin N 199¢-Weyl group and a multiplicative formula for universRtmatrices
Commun. Math. Phy4.34421
[21] Lusztig G 1988 Quantum deformations of certain simple modules over enveloping aldehwaklath.70
237



1722 G W Delius and A Hffmann

[22]
(23]
[24]

[25]

(26]
[27]

(28]

[29]
(30]

(31]

(32]
(33]
[34]
[35]

Lusztig G 1993Introduction to Quantum Groups (Progress in Mathematics 1(B&sel: Birktauser)

Majid S 1993 Quantum and braided Lie algebdasseom. Physl3 307

Rosso M 1988 Finite dimensional representations of the quantum analog of the enveloping algebra of a
complex simple Lie algebr€ommun. Math. Phy4.17 581

Rosso M 1990 Analogues de la forme de Killing et du theoreme d’Harish—Chandra pour les groupes
quantiquesAnn. Sci. Ec. Norm. Su23 445

Samelson H 196%lotes on Lie AlgebragNew York: Van Nostrand)

Schupp P, Watts P and Zumino B 1993 Bicovariant quantum algebras and quantum Lie aimbrasn.
Math. Phys.157 305

Schupp P 1993 Quantum groups, non-commutative differential geometry and applidateprint hep-
th/9312075

Schupp P 1994 Cartan calculus: differential geometry for quantum grergmsint hep-th/9408170

Schnuidgen K and Sdiler A 1995 Classification of bicovariant differential calculi on quantum groups of
type A, B, C and DCommun. Math. Phy<€.07 635

Sudbery A 1995 The quantum orthogonal myst@uantum Groups: Formalism and Applicatiored
J Lukierski, Z Popowicz and J Sobczyk (Warsaw: Polish Scientific) p 303

Sudbery A and Lyubashenko V 1995 Quantum Lie algebras of #yp@reprint g-alg/9510004

Sweedle M E 1996 Hopf algebras(New York: Benjamin)

Wolfram S 1991Mathematica2nd edn (Reading, MA: Addison-Wesley)

Woronowiz S L 1989 Differential calculus on compact matrix pseudogroups (quantum gr@apsjnun.
Math. Phys.122 125



