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On quantum Lie algebras and quantum root systems

Gustav W Delius†‡ and Andreas Ḧuffmann§
Department of Mathematics, King’s College London, The Strand, London WC2R 2LS, UK

Received 7 November 1995, in final form 15 Jaunary 1996

Abstract. As a natural generalization of ordinary Lie algebras we introduce the concept of
quantum Lie algebrasLq (g). We define these in terms of certain adjoint submodules of quantized
enveloping algebrasUq(g) endowed with a quantum Lie bracket given by the quantum adjoint
action. The structure constants of these algebras depend on the quantum deformation parameter
q and they go over into the usual Lie algebras whenq = 1. The notions ofq-conjugation and
q-linearity are introduced.q-linear analogues of the classical antipode and Cartan involution
are defined and a generalized Killing form,q-linear in the first entry and linear in the second, is
obtained. These structures allow the derivation of symmetries between the structure constants
of quantum Lie algebras. The explicitly worked out examples ofg = sl3 andso5 illustrate the
results.

1. Introduction

Lie algebras and their associated root systems play a pervasive role in the theory of classical
integrable models. The great breakthrough in the quantization of these models has been the
realization of the importance of the quantized enveloping algebras associated with these Lie
algebras [16, 11, 12, 14]. With the help of these quantized enveloping algebras it has been
possible to derive many exact results for the full quantum theories.

In this paper we will deal not with the quantization of the enveloping algebras of Lie
algebras but with the quantization of the Lie algebras themselves. Given the fact that most
of the properties of classical integrable models are described by the structure of Lie algebras
rather than their enveloping algebras, it is worthwhile to attempt to describe the quantum
integrable models with quantum Lie algebras instead of quantized enveloping algebras. In
section 2 we will describe the particular examples of quantum integrable theories which
motivated this work.

A Lie algebrag is naturally embedded into its universal enveloping algebraU(g) as a
submodule with respect to the adjoint action. The Lie bracket ong is the restriction of the
adjoint action ofU(g) to this submodule.

In the quantum case we are given the quantized enveloping algebraUq(g) and its
quantum adjoint action on itself. We study those submodules ofUq(g) which under the
quantum adjoint action transform as the adjoint representation, following a remark in [20].
We endow these modules with the quantum Lie bracket induced by the quantum adjoint
action. The resulting algebras are not all isomorphic. But among them there are always
distinguished ones which share further important properties with their classical counterparts
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and it is these which we study in detail in this paper. The precise definition of these quantum
Lie algebras is contained in definition 3.

There is a different approach to the quantization of Lie algebras present in the
literature. It is based on the notion of bicovariant differential calculus on quantum groups
[35, 3, 4, 18, 2, 27, 28, 30]. The resulting structures are braided Lie algebras as discussed
by Majid [23]. Their shortcoming is that they do not have the same dimension as the
corresponding classical Lie algebras except in the case ofg = gln. For a discussion of this
problem see [31]. For the case ofg = sln this problem has recently been solved by Sudbery
and Lyubashenko [32].

This paper is structured as follows. In section 2 we briefly mention the features of
affine Toda quantum field theories which motivated our search for a quantum deformation
of Lie algebras and root systems. This section is included purely as a motivation. Section 3
contains some necessary preliminary material on Lie algebras and on quantum enveloping
algebras. In order to introduce the concept of quantum Lie algebras we give in section 4
the very simple example ofLh(sl2). In section 5 we give the beginnings of a general
study of the structure of quantum Lie algebras. The standard tools provided by the general
structure of quantum groups are complemented with the notion ofq-conjugation. It is
this construction that allows us to exploit a generalization of the classical Killing form,
defined in section 5.3, to obtain the analogue of the Weyl canonical form of a Lie algebra
in section 5.4. Relations and symmetries of the structure constants of the quantum Lie
algebras in this basis are derived in section 5.5 and the quantum root space is investigated
in section 5.6.

Finally the structure constants for the quantum Lie algebras associated with the Lie
algebrasa2 (= sl2) and c2 (= sp(4) = so(5)) are given in section 6. The calculations
were done on a computer usingMathematica [34]. The results were obtained without
using the general results of section 5 on the structure of quantum Lie algebras but are of
course found to be in agreement with them. By the same methods we have also obtained
the explicit results for the quantizations of the Lie algebrasa3 = sl4 and g2. All the
explicit calculations and results are available in the form ofMathematicanotebooks at
http://www.mth.kcl.ac.uk/˜delius/q-lie.html on the World Wide Web.

The straightforward determination of the explicitq-dependent structure constants of
quantum Lie algebrasLq(g) is extremely tedious. We have therefore recently described
a general method for obtaining them from theR-matrix of Uq(g) [8]. This method had
independently and earlier been derived in the formalism of differential calculus on quantum
groups, see, e.g., [27]. However, in [8] it is applied tog = gln andg = sln for all n. The
paper [9] establishes the existence and uniqueness of the quantum Lie algebras discussed
here.

2. Physical motivation

We want to start by giving the physical motivation which has led us to undertake the present
study of quantum Lie algebras and quantum root systems. This section is meant purely to
give our motivation and is in no way needed in the rest of the paper.

This work has grown out of our desire to understand the exact results which have
been obtained in quantum affine Toda theories. In these theories it has been possible to
obtain the full quantum mass ratios and the exactS-matrices for the fundamental particles
[5, 7]. Furthermore, Dorey [10] has found an elegant description of these results in terms
of properties of the root systems of the underlying Lie algebras. While this description is
exact for the cases where the affine root system is self-dual, the true quantum results in
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the case of non-self-dual root systems require certain deformations, with the deformation
parameter depending on the product of Planck’s constant and the coupling constant [7].

It is tempting to conjecture that the systematics of these deformations might be
understandable in terms of the quantum root systems of quantum Lie algebras. However,
a concept of quantum root systems associated with quantum Lie algebras has, to our
knowledge, never been studied in the literature.

Affine Toda theories are massive integrable two-dimensional relativistic field theories
described by the Lagrangian density

L[φ] = b
(
∂µφ, ∂

µφ
) + m2

β2
b

(
eβadφz1, z−1

)
(2.1)

where the bosonic fieldφ takes its values in the Cartan subalgebra of a simple Lie algebra
g, m2 is a mass scale,β is the coupling constant, andb( . , . ) is the Killing form ong. The
z±1 are cyclic elements ofg which in a standard notation can be expressed as

z1 =
∑
α∈1

√
nα xα z−1 =

∑
α∈1

√
nα x−α (2.2)

where1̄ is the set1 of simple roots extended by the rootα0 which is minus the highest
root (or the highest short root in the case of twisted Toda theories). Thenα are the Kac
labels defined so thatnα0 = 1 and

∑
α∈1 nαα = 0. The classical masses of the fields can

be read off the Lagrangian and their squares are found to be the eigenvalues of the matrix
(written in terms of some basis{hi} of the Cartan subalgebra)

M2
ij =

∑
α∈1

nα α(hi) α(hj ) . (2.3)

The equivalent characterization of the squares of the masses is as the eigenvalues of the
adjoint action ofz1 z−1 on the Lie algebra or as the length squared of the projections
of certain roots into the lowest eigenspace of the Coxeter element of the Weyl group.
Numerically this typically leads to values (slight modifications depend on the particular Lie
algebrag)

m2
a = 8m2 sin2 aπ

2h
h =

∑
α∈1

nα (2.4)

wherea is the integer labelling the particle andh is the (twisted) Coxeter number ofg.
In the quantum theory these masses receive quantum corrections. However, when the

dust settles, it turns out that the exact quantum masses are still given by the formula in (2.4)
but with the Coxeter numberh replaced by a ‘quantum’ Coxeter numberH . When the set
1̄ is self-dual (i.e. if∀ α ∈ 1̄ also 2α/α2 ∈ 1̄) this quantum Coxeter numer is equal to its
classical value but in the non-self-dual case it is coupling constant dependent in the generic
form

H = h+ c
β2h̄/2π

1 + β2h̄/4π
(2.5)

wherec depends on the particular Lie algebra. Will it be possible to find a quantum Lie
algebraic explanation for these mass formulae? In particular, is there a natural definition of
a quantum Coxeter number?

The factorizedS-matrices for the fundamental particles of affine Toda theories have
been exactly determined by solving the equations arising from the bootstrap principle
[5, 7]. Dorey [10] found that solutions to these very stringent bootstrap equations could
be constructed by using the properties of the root systems of Lie algebras. These solutions
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describe theS-matrices of the self-dual Toda theories. They have the special property
that the locations of the poles do not depend on ¯h. In addition to Dorey’s solutions there
is another set of solutions in which the pole locations depend on ¯h through the quantum
Coxeter number. These solutions give theS-matrices of non-self-dual Toda theories. Can
the reason for the existence of these solutions be understood in terms of the properties of
quantum root systems?

3. Preliminaries

For background on Lie algebras see [26], for example. Letg be a simple complex Lie
algebra of rankr, R the set of non-zero roots andα1, α2, . . . , αr its simple roots. Let
b : g⊗ g → C be the Killing form. Choose a basiŝh1, ĥ2, . . . ĥr for the Cartan subalgebra
H so thatb(ĥi, h) = αi(h) ∀ h ∈ H. Choose root vectorŝxα so thatb(x̂α, x̂−α) = −1.
Then the Lie bracket relations take the Weyl canonical form

[ĥi , x̂α] = −[x̂α, ĥi ] = α(ĥi) x̂α [ĥi , ĥj ] = 0

[x̂α, x̂−α] = −ĥα where if α =
∑

kiαi then ĥα =
∑

kiĥi

[x̂α, x̂β ] = Nα,β x̂α+β for β 6= −α and α + β ∈ R .
(3.1)

TheNα,β are real numbers which can be determined entirely in terms of the root system.
The scalar product on the root lattice is defined by

α · β ≡ b
(
ĥα, ĥβ

)
= α(ĥβ) . (3.2)

The Weyl canonical basis is related to the Chevalley canonical basis by

x±α = ±
√

2

α · α x̂±α hi = 2

α · α ĥi . (3.3)

In the Chevalley basis all structure constants are integers. To generate the Lie algebra it is
sufficient to consider the simple root vectorsx±

i = x±αi . The relations are then[
hi, hj

] = 0
[
hi, x

±
j

]
= ±aij x±

j

[
x+
i , x

−
j

]
= δijhj

ad(x±
i )

1−aij (x±
j ) = 0 if i 6= j .

(3.4)

The last relations are the Serre relations. The adjoint action is defined by the Lie bracket
ad(x)(y) = [x, y] and aij = 2αi · αj/αi · αi is the Cartan matrix.

The universal enveloping algebraU(g) is the unital associative algebra overC with
generatorsx+

i , x
−
i , hi , 1 6 i 6 r and relations (3.4) in which the Lie bracket is replaced

by the commutator. The quantized eveloping algebraUh(g) is an algebra overC[[h]], the
ring of formal power series in the indeterminateh, with the same set of generators but with
the deformed relations†[

hi, hj
] = 0

[
hi, x

±
j

]
= ±aij x±

j[
x+
i , x

−
j

]
= δij

q
hi
i − q

−hi
i

qi − q−1
i

(3.5)

† We have found [6] to be a generally reliable reference on quantum groups. Ourx±
i are related to theX±

i of [6]

by x+
i = k

−1/2
i X+

i andx−
i = X−

i k
1/2
i .
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and the quantum Serre relations
1−aij∑
k=0

(−1)k
[

1 − aij
k

]
qi

(x±
i )

kx±
j (x

±
i )

1−aij−k = 0 i 6= j . (3.6)

Here
[(
a

b

)]
q

are theq-binomial coefficients. We have definedqi = edih wheredi are coprime

integers such thatdiaij is a symmetric matrix. We will use the notationki = q
hi
i and then

the relations (3.5) take the form

kikj = kj ki kix
±
j k

−1
i = q

±aij
i x±

j

[
x+
i , x

−
j

]
= δij

ki − k−1
i

qi − q−1
i

. (3.7)

Note the technical point that in this paper we do not work with some rational formUq(g)

but always with the algebraUh(g) defined overC[[h]]. Indeed it can be seen from the
example ofg = a2 that in general our quantum Lie algebras do not exist in the usual
adjoint rational form but that one would have to use thesimply-connectedrational form.

The Hopf algebra structure ofUh(g) is given by the comultiplication

1(hi) = hi ⊗ 1 + 1 ⊗ hi (3.8)

1(x±
i ) = x±

i ⊗ q
hi/2
i + q

−hi/2
i ⊗ x±

i (3.9)

the antipode

S(hi) = −hi S(x±
i ) = −q±1

i x±
i (3.10)

and the counit

ε(hi) = ε(x±
i ) = 0 . (3.11)

The antipode does not square to the identity but rather

S2(a) = u a u−1 with u = q2hρ (3.12)

whereq = eh and hρ is the element of the Cartan subalgebra determined byb(hρ, h) =
ρ(h) ∀ h ∈ H with ρ being half the sum of the positive roots.

The Cartan involutionθ is given by the same formulae as in the classical case

θ(x±
i ) = x∓

i θ(hi) = −hi . (3.13)

It is an algebra automorphism and a coalgebra anti-automorphism

1 · θ = (θ ⊗ θ) ·1T S · θ = θ · S−1 . (3.14)

If the Dynkin diagram ofg has a symmetryτ which maps nodei into nodeτ(i) then the
Lie algebrag has an automorphism

τ(x±
i ) = x±

τ(i) τ (hi) = hτ(i) (3.15)

which extends to a Hopf-algebra automorphism ofUh(g). Such τ are refered to as
diagram automorphisms and except for rescalings of thex±

i they are the only Hopf-algebra
automorphisms ofUh(g).

The adjoint action ofUh(g) on itself, using Sweedler’s notation [33], is given by

x ◦ y =
∑

x(1) y S(x(2)) x, y ∈ Uh(g) . (3.16)

There is a second adjoint action• defined by

x • y =
∑

x(2) y S
−1(x(1)) . (3.17)

The Cartan involutionθ and the antipodeS respect the adjoint actions in the sense of
[θ(a) • θ(b)] = θ([a ◦ b]) and [S(a) • S(b)] = S([S−1(a) ◦ b]) for all a, b ∈ Uh(g).
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4. The example ofsl2

As an introduction to the idea of a quantum Lie algebra it is useful to consider the very
simple example ofsl2. The quantized enveloping algebraUh(sl2) is generated by the three
generatorsh, x+, x− and the commutation relations

[h, x±] = ±2x± [x+, x−] = qh − q−h

q − q−1
. (4.1)

Thus these three generators do not close to form a Lie algebra because the right-hand side
of the second equation is non-linear. Of course one would not expect them to do so. In
the quantum case the commutator, which describes the classical adjoint action, should be
replaced by the quantum adjoint action described in (3.16). In general the adjoint action on
any a ∈ Uh(g) is given by

h ◦ a = [h, a] x± ◦ a = x± a q−h/2 − q−h/2±1 a x± (4.2)

and this produces the commutator only forq = 1. The generatorsh, x± do not close even
under the quantum adjoint action. However, the elements

X± = qh/2x± H = q−1x+x− − qx−x+ (4.3)

do. Indeed, their adjoint actions on each other can be easily calculated to be given by

[H ◦X+] = (1 + q−2)X+ [X+ ◦H ] = −(1 + q2)X+

[H ◦X−] = −(1 + q2)X− [X− ◦H ] = (1 + q−2)X−

[X+ ◦X−] = H [X− ◦X+] = −H
[H ◦H ] = (q−2 − q2)H [X± ◦X±] = 0 .

(4.4)

We use the bracket notation for the quantum adjoint action to indicate that we now view
it as the quantum analogue of the Lie bracket. The algebra in (4.4) is the quantum Lie
algebraLh(sl2). Its structure constants areq-dependent in such a way that it goes over into
the classicalsl2 Lie algebra forq = 1.

The simplicity of this example is deceptive. For any Lie algebra other thansl2 the
associated quantum Lie algebra is much more complex. We give other examples in section 6.

5. General structure

It is now our aim to make some general statements about the structure of quantum Lie
algebras and to derive symmetries between their structure constants.

5.1. q-conjugation

An important role is played in our general study by the concept ofq-conjugation.

Definition 1. (a) q-conjugation∼: C[[h]] → C[[h]], a 7→ ã is the ring automorphism
defined byh̃ = −h.
(b) LetM,N be C[[h]]-modules. A mapφ : M → N is q-linear if

φ(λ a) = λ̃ φ(a) ∀ a ∈ M,λ ∈ C[[h]] . (5.1)

(c) Let A,B be algebras overC[[h]]. A q-linear mapφ : A → B is an algebra q-
homomorphismif it respects the algebra product, i.e. if∀ a, a′ ∈ A, φ(a a′) = φ(a) φ(a′).
q-anti-isomorphisms,q-automorphisms, etc, are defined analogously.
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Note the analogy between the concepts ofq-conjugation and complex conjugation and
betweenq-linear maps and anti-linear maps.

Definition 2. q-conjugationon the quantum groupUh(g) is the algebraq-automor−phism
∼: Uh(g) → Uh(g) that extendsq-conjugation onC[[h]] by acting as the identity on the
generatorsx±

i andhi .

This definition is consistent because the relations (3.5) and (3.6) are invariant under
q 7→ q−1. The notion ofq-conjugation has already been introduced in [13].

Defining a tilded Cartan involution and a tilded antipode as compositions

S̃ =∼ ·S θ̃ =∼ · θ (5.2)

the concept ofq-conjugation proves to be useful as we have the following lemma.

Lemma 1. (a) q-conjugation is a Hopf algebraq-isomorphism∼: Uh(g) → Uh(g)
op, in

particular

ε· ∼=∼ · ε 1· ∼=∼ ·1T S· ∼=∼ ·S−1 . (5.3)

(b) q-conjugation relates the adjoint actions as

ã • b̃ = ã ◦ b ∀ a, b ∈ Uh(g) . (5.4)

(c) θ̃ : Uh(g) → Uh(g) is a Hopf algebraq-isomorphism, especially

θ̃ (a) ◦ θ̃ (b) = θ̃ (a ◦ b) ∀ a, b ∈ Uh(g) . (5.5)

(d) S̃ : Uh(g) → Uh(g) is an algebraq-anti-isomorphism such that

S̃(a) ◦ S̃(b) = S̃(S−1(a) ◦ b) ∀ a, b ∈ Uh(g) . (5.6)

5.2. Quantum Lie algebrasLh(g)

A Lie algebrag is naturally embedded into its universal enveloping algebraU(g). It forms a
subspace of the enveloping algebra which under the adjoint action transforms in the adjoint
representation and the adjoint action restricts to the Lie bracket. As a starting point it is
natural to define a quantum Lie algebraLh(g) as a submodule of the quantized enveloping
algebraUh(g) with the analogous property. The following definition additionally requires
that a quantum Lie algebra be invariant underθ̃ , S̃ andτ , as this is not guaranteed by the
classical limit itself.

While a modification of the following definition would also be appropriate in the case
of Kac–Moody algebras, in this paper we have the case of finite-dimensional Lie algebras
in mind.

Definition 3. A quantum Lie algebraLh(g) associated with a finite-dimensional simple
complex Lie algebrag is a finite-dimensional indecomposable◦-submodule ofUh(g)
endowed with thequantum Lie bracket[a ◦ b] = a ◦ b such that

(i) Lh(g) is a deformation ofg, i.e. Lh(g)|h=0 = g.
(ii) Lh(g) is invariant under̃θ , S̃ and any diagram automorphismτ .
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An immediate consequence of this definition is that, under the adjoint action ofUh(g),
Lh(g) transforms as the adjoint representation. The structure of this representation is well
known. As is the case with all finite dimensional highest-weight representations ofUh(g)

[24, 21], it is just a deformation of the corresponding classical representation. It follows in
particular thatLh(g) splits into submodules of definite weight

Lh(g) =
⊕
α∈R

Lα ⊕ L0 h ◦ aα = α(h)aα ∀ aα ∈ Lα (5.7)

where the dimension ofL0 is equal to the rank ofg and theLα are one-dimensional for
any rootα of g. (5.7) defines a grading of the quantum Lie algebra: [Lα ◦Lβ ] ∈ Lα+β . We
will refer to L0 = H as the Cartan subalgebra and to the elements ofLα as root vectors.

We choose some basis{Xα|α ∈ R}∪ {Hi |i = 1 . . . rank(g)} for the quantum Lie algebra
Lh(g) so thatXα ∈ Lα,Hi ∈ H. Because of the grading (5.7) the Lie bracket relations of
Lh(g) are restricted to take the form

[Hi ◦Xα] = lα(Hi)Xα [Xα ◦Hi ] = −rα(Hi)Xα
[Hi ◦Hj ] = fij

k Hk [Xα ◦X−α] = −Hα ∈ L0

[Xα ◦Xβ ] = Nαβ Xα+β for β 6= −α and α + β ∈ R .
(5.8)

This is similar in form to the classical relations (3.1). There are, however, some crucial
differences. Because the quantum Lie bracket is not antisymmetric, there are two sets of
roots, the ‘left’ rootslα and the ‘right’ rootsrα. Furthermore these roots are now not valued
in C but in C[[h]]. Similarly the constantsNα,β and fij k are elements ofC[[h]]†. Note
also that [Hi ◦Hj ] can be non-zero.

The requirement of invariance ofLh(g) under θ̃ , S̃ and τ is not empty. Already the
example ofg = a2, treated in section 6.1, exhibits a whole family ofUh(g)◦-submodules
which satisfy the first part of definition 3 but not the second. However, given any non-
invariantUh(g)◦-submoduleLh(g)0 ⊂ Uh(g) satisfying the first part of the definition, a
symmetrization with respect tõθ , S̃ and τ is always possible. To see this, fix a highest-
weight stateψ ∈ Lh(g)0 and choose a lowest-weight stateψ̄ = P(x−) ◦ ψ , P(x−) being
a monomial in the generatorsx−

i . θ̃ (Lh(g)0) satisfies the first part of the definition as
well. Fix a highest-weight stateψ ′ ∈ θ̃ (Lh(g)0) by requiring θ̃ (ψ ′) = ψ̄ and define
ψ̄ ′ = P(x−) ◦ ψ ′. Then θ̃ (ψ) = αψ̄ ′ with some 0 6= α ∈ C[[h]]. The equalities
ψ = α̃P̃ (x+)P (x−) ◦ ψ andψ ′ = αP̃ (x+)P (x−) ◦ ψ ′ imply α = α̃. Due to the classical
limit α has a square root. RenormalizingQ(x−) = √

αP (x−), φ = ψ , φ̄ = Q(x−) ◦ φ,
φ′ = √

αψ ′ and φ̄′ = Q(x−) ◦ φ′ leads toθ̃ (φ) = φ̄′ and θ̃ (φ′) = φ̄. φ1 = γφ + γ̃ φ′

satisfiesθ̃ (φ1) = Q(x−) ◦ φ1 for 0 6= γ ∈ C[[h]] arbitrary but fixed.
Note that the above construction goes through under the additional requirementQ̃(x−) =

q−4λ(hρ)Q(x−), whereλ is the highest root. This meansS2(Q(x−)) = Q̃(x−). Now let
φ2 = φ1 − S̃(φ1) to find S̃(φ2) = −φ2 and, using (5.6),̃θ(φ2) = Q(x−) ◦ φ2 as desired.
Hence,Lh(g) = Uh(g) ◦ φ2 is a quantum Lie algebra. In the case there is a diagram
automorphismτ it is possible additionally to symmetrize with respect toτ . τ then restricts
to an automorphism of the resulting quantum Lie algebra.

Whenever there exists more than one quantum Lie algebra associated with the same
Lie algebrag, then there exist also whole families of ‘almost’ quantum Lie algebras which
satisfy the first part of the definition but are not invariant underθ̃ . Consider the situation of

† It will usually be possible to treath as a numeric deformation parameter and then to work overC. However,
before doing this it is clearly necessary to verify that all occuring power series inh converge for a certain range
of values forh.
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two quantum Lie algebras with highest-weight statesψ1, ψ2 such thatθ̃ (ψj ) = Q(x−)◦ψj ,
j = 1, 2. (An example for this situation is provided bya2.) For α, β ∈ C[[h]] construct
the orbitUh(g) ◦ (αψ1 + βψ2). From θ̃ (αψ1 + βψ2) = Q(x−) ◦ (α̃ψ1 + β̃ψ2) it follows
thatUh(g) ◦ (αψ1 + βψ2) is θ̃ -invariant only if α

β
= (̃ α

β
).

It had been observed already in the context of the bicovariant differential calculus that
quantum Lie algebras are not left invariant by the antipode, see [29] for a discussion. We
have just shown, however, that it is always possible to find quantum Lie algebras that are
invariant under the combined action of the antipode andq-conjugation. This invariance will
be crucial in the developments to follow.

There always exists a quantum Lie algebraLh(g) associated with any simple complex
Lie algebrag. Furthermore, allLh(g) associated with the sameg are isomorphic as algebras.
This has been shown in [9].

5.3. Killing form

The Killing form plays a crucial role in the structure theory of Lie algebras. It is a symmetric
bilinear form on the Lie algebra and its crucial property is the invariance under the adjoint
action. We define a quantum analogue as follows.

Definition 4. The quantum Killing formis the mapB : Lh(g)⊗Lh(g) → C[[h]] given by

B(a, b) = − Tradj

(
S̃(a) b u

)
. (5.9)

Here Tradj denotes the trace over the adjoint representation andu is the element ofUh(g)
expressing the square of the antipode as in (3.12).

This definition goes over into the classical Killing formb in the classical limit (h = 0).
From the non-degeneracy of the classical Killing form the non-degeneracy of the quantum
Killing form follows. The analogue of the ad-invariance for the quantum Killing form is

B(a, c ◦ b) = B(S̃(c) ◦ a, b) (5.10)

which can be straightforwardly derived from the definition.
Note that our quantum Killing form onLh(g) is not the restriction of the usual Killing

form R on Uh(g) first defined by Rosso [25]. The ad-invariance of the latter is expressed
in terms of theUh(g) coproduct:

∑
R(x(1) ◦ y, x(2) ◦ z) = ε(x)R(y, z) ∀ x, y, z ∈ Uh(g).

This is not useful for our purposes because theUh(g) coproduct leads out of the quantum
Lie algebraLh(g).

The quantum Killing form isq-linear in its first argument and linear in the second, i.e.
for any λ ∈ C[[h]]

B(λ b, a) = λ̃ B(b, a) B(b, λ a) = λB(b, a) . (5.11)

The quantum Killing form is not symmetric. However, it isq-symmetric in the sense that

B(b, a) = B̃(a, b) (5.12)

In addition we have the following two relations

B(b, a) = B(S̃(a), S(b̃)) (5.13)

= B(θ̃(a), θ̃(b)) . (5.14)

To derive these relations one has to realize that the dual ofπadj, πadj · θ and∼ ·πadj· ∼ are
all related to the adjoint representationπadj itself by similarity transformations.
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5.4. Weyl canonical form

Proposition 2. It is possible to choose a basis{Xα|α ∈ R} ∪ {Hi |i = 1 . . . rank(g)} for
Lh(g) with the properties

B(Xα,X−α) = −1 (5.15)

θ̃ (Xα) = X−α θ̃(Hi) = −Hi (5.16)

S̃(Xα) = −q−ρ·α Xα S̃(Hi) = −Hi . (5.17)

Proof. In the following we will have to invert and to take square roots of elements of
C[[h]]. While this is not in general possible, it presents no problem for those formal power
series which have a non-vanishing classical limit.

It is clear by (5.10) thatB(Xα,Xβ) ∝ δα+β,0. We can choose the scale of theXα for
positiveα so thatB(X−α,Xα) = −1. By the symmetry property (5.12) of the Killing form
the normalization (5.15) then holds for allα.

The most general action ofθ on Xα is, for reasons of weight,θ(Xα) = fα X̃−α for
somefα ∈ C[[h]]. Since θ2 = id and ∼ commutes withθ we haveXα = fαf̃−αXα,
i.e. f −1

α = f̃−α for all α. If we rescale theXα by f −1/2
α both (5.16) and (5.15) hold. In

particular, theXα are determined up to sign by (5.15) and (5.16).
The most general action ofS on Xα is, again for reasons of weight,S(Xα) = sα X̃α

for somesα ∈ C[[h]]. HenceXα = S−1 · S(Xα) = sαS̃(Xα) = sαs̃αXα, i.e. s−1
α = s̃α.

Furthermore,S · θ · S = θ and (5.16) implys−α = s−1
α . Finally, (3.12), (5.11) and (5.13)

lead to 1= −B(X−α,Xα) = −B(S̃(Xα), S(X̃−α)) = sα s̃−α q−2ρ·α. Hences2
α = q2ρ·α. The

sign in (5.17) is determined by the classical limit (h = 0).
We construct the basis states for the Cartan subalgebraH as follows

Hi = 1
2

(
qρ·αi [X−αi ◦Xαi ] − q−ρ·αi [Xαi ◦X−αi ]

)
. (5.18)

Then, using (5.4) and (5.5),θ(Hi) = −H̃i follows. The relationS(Hi) = −H̃i follows
from B(X−α, [Hi ◦ Xα]) = B([θ̃ (Hi) ◦ θ̃ (Xα)], θ̃ (X−α)) = −B([Hi ◦ X−α], Xα) =
−B(X−α, [S̃(Hi) ◦ Xα]). At h = 0 theHi defined above are equal to theĥi of the usual
Weyl canonical form of (3.1). This shows that theHi are linearly independent and thus
give a basis of the Cartan subalgebraH. �

Remark. Note that theHi are not unique. For example, every choiceHi = 1
2

(
γiH−αi

−γ̃iHαi
)

with 0 6= γi ∈ C[[h]] such thatγi + hC[[h]] = 1 + hC[[h]] is possible.
If g has a diagram automorphism thenτ acts as

τ(Xα) = tα Xτ(α) τ (Hi) = Hτ(i) tα = ±1 (5.19)

where the signstα are the same as in the classical case.

Proof. For reasons of weightτ(Xα) = tα Xτ(α) for some tα ∈ C[[h]]. From
B(X−α,Xα) = B(τ(X−α), τ (Xα)) = t̃−αtαB(X−α,Xα) it follows that t̃−αtα = 1. From
θ̃ (τ (X−α)) = τ(θ̃(X−α)) it follows that t̃−α = tα. Together this givest2α = 1 and thus
tα = ±1. The action onHi follows from (5.18) and the choicetαi = 1. �
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5.5. Relations between structure constants

We are now ready to derive relations between the various structure constants appearing in
(5.8) when using the basis of proposition 2. From the isomorphism property (5.5) ofθ̃ we
obtain an expression of the quantum roots for negativeα in terms of the quantum roots for
positiveα:

[θ̃ (Hi) ◦ θ̃ (X−α)] = θ̃ ([Hi ◦X−α]) ⇒ l−α(Hi) = −l̃α(Hi) ∀ α, i (5.20)

[θ̃ (X−α) ◦ θ̃ (Hi)] = θ̃ ([X−α ◦Hi ]) ⇒ r−α(Hi) = −r̃α(Hi) ∀ α, i . (5.21)

Thus, unlike in the classical case, the negative of a left quantum root is not a left quantum
root again, but theq-conjugated negative is. Idem for right quantum roots. We also obtain
relations for the structure constantsN andf :

[θ̃ (Xα) ◦ θ̃ (Xβ)] = θ̃ ([Xα ◦Xβ ]) ⇒ Nα,β = Ñ−α,−β ∀ α, β (5.22)

[θ̃ (Hi) ◦ θ̃ (Hj )] = θ̃ ([Hi ◦Hj ]) ⇒ fij
k = −f̃ij k ∀ i, j, k . (5.23)

From the ad-invariance (5.10) of the quantum Killing form we obtain the characterization
of the Cartan subalgebra elementsHα in terms of the right roots

− B(Hα,H) = B([Xα ◦X−α], H) = B(X−α, [S̃(Xα) ◦H ])

= B(X−α,−q−ρ·α[Xα ◦H ]) = q−ρ·αrα(H) ∀ α, ∀ H ∈ H . (5.24)

Because of the non-degeneracy of the Killing form these relations determine theHα uniquely
in terms of the roots. We also obtain further relations for the structure constantsN andf :

B([S̃(Xα) ◦Xβ ], X−α−β) = B(Xβ, [Xα ◦X−α−β ])

⇒ Nα,−α−β = −qρ·αÑα,β ∀ α, β (5.25)

B([S̃(Hj ) ◦Hi ], Hk) = B(Hi, [Hj ◦Hk]) ⇒
∑
l

fjk
lBil = −

∑
l

f̃j i
lBlk (5.26)

where we have definedBij = B(Hi,Hj ).
There exists a quantum Lie algebra anti-automorphismχ : Lh(G) → Lh(g) acting on

the basis as

χ(Xα) = −X−α χ(Hi) = Hi . (5.27)

From the anti-automorphism property

[χ(a) ◦ χ(b)] = χ([b ◦ a]) ∀ a, b ∈ Lh(g) (5.28)

we obtain the relation between the ‘left’ and ‘right’ quantum roots

lα = −r−α ∀ α (5.29)

and the relations

Nα,β = −N−β,−α fij
k = fji

k . (5.30)

The proof that (5.27) defines an anti-automorphism of the quantum Lie algebras is contained
in [9].

If g has a diagram automorphismτ then this leads to further relations:

fτ(i)τ (j)
τ (k) = fij

k Nτ(α),τ (β) = tαtβ tα+βNα,β (5.31)

lτ (α)(Hτ(i)) = lα(Hi) rτ(α)(Hτ(i)) = rα(Hi)

Bτ(i)τ (j) = Bij .
(5.32)
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5.6. Quantum root spaces

We have seen that a quantum Lie algebra posesses two sets of quantum roots,lα and rα,
defined by

[H ◦Xα] = lα(H)Xα [Xα ◦H ] = −rα(H)Xα . (5.33)

The roots are linear forms on the Cartan subalgebraH with values inC[[h]], i.e. they are
elements ofH∗. If the quantum Lie algebra has the anti-automorphismχ of (5.27), then
the roots are related byrα = −l−α, i.e. the set of right roots is just the negative of the set
of left roots.

From the Killing form onH we construct a form onH∗ in the usual way. With
any elementv ∈ H∗ we associate the unique elementHv ∈ H satisfying v(H) =
B(Hv,H) ∀ H ∈ H. Note that this pairing isq-linear in the sense that the element of
H associated withλ v for someλ ∈ C[[h]] is not λHv but λ̃ Hv. The form onH∗ is defined
by

〈v,w〉 = B(Hv,Hw) ∀ v,w ∈ H∗ . (5.34)

Because the Killing form isq-linear in the first factor and linear in the second, the form
〈 . , . 〉 is linear in the first factor andq-linear in the second

〈λ v,w〉 = λ〈v,w〉 〈v, λw〉 = λ̃〈v,w〉 . (5.35)

It is alsoq-symmetric

〈v,w〉 = 〈̃w, v〉 . (5.36)

From relation (5.24) we can read off, for example, that

〈rα, rβ〉 = qρ·(α−β) B(Hα,Hβ) . (5.37)

In the classical case of complex Lie algebras one introduces a real formHR of the
Cartan subalgebra and on its dual spaceH∗

R, which is a real vectorspace, the form induced
by the Killing form is a real, positive definite, bilinear form, thus givingH∗

R the structure
of a Euclidean space. This is the root space.

We can imitate this construction for quantum Lie algebras. We define the ‘q-real’ form
HR[[h2]] of the Cartan subalgebra as the module overR[[h2]] spanned by theHi . We choose
R[[h2]] as the base ring because it consists of the elements ofC[[h]] which are invariant
under both complex conjugation andq-conjugation. The roots, when restricted toHR[[h2]] ,
still give values inR[[h]], and not in R[[h2]], and thus do not lie in

(HR[[h2]]

)∗
. The

q-symmetrized combinationsaα = 1
2(rα − r−α) do, however, give values inR[[h2]]. The

ai ≡ aαi for all simple rootsαi form a basis forH∗
R[[h2]] . On this basis the form is given by

〈ai, aj 〉 = B(Hi,Hj ) = Bij . (5.38)

We see immediately that the form〈 . , . 〉 restricted toH∗
R[[h2]] is a symmetric, non-degenerate,

bilinear form with values inR[[h2]].
We expect, however, that in an eventual axiomatic description of quantum root systems

the unrestricted form〈 . , . 〉 will be used and that the fact that it is not symmetric and
bilinear but ratherq-symmetric andq-bilinear will play a central role.
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6. Explicit examples

We have explicitly constructed three examples of quantum Lie algebras, namely those
associated withg = a2, a3, c2 and withg2. The construction follows straightforwardly from
definition 3. We search for a highest-weight state insideU

>0
h (g) and impose a symmetry

constraint if appropriate. Then the corresponding orbit is constructed and explicitly tested
for the invariance properties required by the definition to be satisfied. The details for the
cases ofg = a2 andc2 are given below.

Rather than describe the quantum groups in terms of fundamental generators and their
relations, the selection of a Poincaré–Birkoff–Witt (PBW) type basis is useful for explicit
computations. In the construction of such a basis with the help of the Lusztig automorphisms
[22] we follow the conventions of [6]; an alternative would be the approach of [19]. For
a reduced decomposition of the longest Weyl group elementw0 = si1 . . . siN the quantum
root vectors are given by

ek = Ti1 . . . Ti(k−1) (X
+
ik
) (6.1)

fk = Ti1 . . . Ti(k−1) (X
−
ik
) . (6.2)

Note thatek is a polynomial in{X+
i } while analogouslyfk is a polynomial in{X−

i }, although
this is not entirely obvious from the definition of the Lusztig automorphismsTj .

6.1. Lh(a2)

a2 = sl3 is the rank-2 Lie algebra with Cartan matrix

a =
( 2 −1

−1 2

)
. (6.3)

It has a diagram automorphismτ which exchanges the two simple roots, i.e.X±
1 ↔ X±

2
andk1 ↔ k2. The quantum root vectors generating thePBW basis which we use involve the
choicew0 = s1s2s1:

e1 = X+
1 e2 = −X+

1 X
+
2 + q−1X+

2 X
+
1 e3 = X+

2

f1 = X−
1 f2 = q X−

1 X
−
2 −X−

2 X
−
1 f3 = X−

2 .
(6.4)

The diagram automorphism acts asτ(e1) = e3, τ(e2) = −q−1e2−(1−q−2)e3e1, τ(e3) = e1.
In terms of thePBW basis it is straightforward to write down an ansatz9 for a highest-
weight state according to point (ii) of the definition 3. Once we restrict the ansatz for9

to lie entirely inU>0
h , i.e. not to contain anyfi , we find two independent solutions of the

equationsx+
i ◦ 9 = 0. With respect to the diagram automorphism these can be described

as a highest-weight state

9+ = e2(k
1/3
1 k

−1/3
2 − q−1k

−1/3
1 k

1/3
2 )− (1 − q−2)e3e1k

−1/3
1 k

1/3
2 (6.5)

that is invariant under the diagram symmetry, while

9− = e2(k
1/3
1 k

−1/3
2 + q−1k

−1/3
1 k

1/3
2 )+ (1 − q−2)e3e1k

−1/3
1 k

1/3
2 (6.6)

changes sign under the diagram automorphism. The (skew) invariance of9± follows by
means of[e1, e3]q−1 = −e2. The symmetrization with respect toτ enforces the symmetries
required by the definition of a quantum Lie algebra.

We now observe that9+ vanishes in the classical limitq → 1 whilst 9− reduces to
the highest root vector of the classical Lie algebra. Hence9− is a desirable starting point
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for the construction of an adjoint orbit. The resulting orbit is in fact found to satisfy all the
requirements of definition 3. We then chose a quantum Weyl basis with the properties of
proposition 2. The explicit expressions for these quantum Lie algebra generators are listed
below to give the reader an idea about the form of these generators. Note, for example,
that the quantum Cartan subalgebra generators are not simple expressions:

Xα1+α2 = −C
(
e2(q

−1/2k
1/3
1 k

−1/3
2 + q−3/2k

−1/3
1 k

1/3
2 )− (q−1 − q)q−3/2e3e1k

−1/3
1 k

1/3
2

)
Xα2 = −iC

(
e3(q

1/2k
−2/3
1 k

−1/3
2 + q−1/2k

2/3
1 k

1/3
2 )+ (q−1 − q)q−1/2e2f1k

1/3
1 k

−1/3
2

)
Xα1 = iC

(
e1(q

1/2k
−1/3
1 k

−2/3
2 + q−1/2k

1/3
1 k

2/3
2 )− (q−1 − q)q−3/2e2f3k

−1/3
1 k

1/3
2

+(q−1 − q)2q−3/2e3e1f3k
−1/3
1 k

1/3
2

)
H1 = C2 1 + q3

2(1 − q)

(
−qk2/3

1 k
−2/3
2 + k

−2/3
1 k

+2/3
2 − k

4/3
1 k

2/3
2 + qk

−4/3
1 k

−2/3
2

+(1 − q2)2
(
+e1f1(q

−2k
−1/3
1 k

−2/3
2 + q−3k

1/3
1 k

2/3
2 )

+q−4e2f2k
−1/3
1 k

1/3
2 − q−2e3f3k

2/3
1 k

1/3
2

)
−(1 − q2)3q−5e3e1f2k

−1/3
1 k

1/3
2

)
H2 = C2 1 + q3

2(1 − q)

(
−qk−2/3

1 k
2/3
2 + k

2/3
1 k

−2/3
2 − k

2/3
1 k

4/3
2 + qk

−2/3
1 k

−4/3
2

+(1 − q2)2
(
+e3f3(q

−2k
−2/3
1 k

−1/3
2 + q−3k

2/3
1 k

1/3
2 )

+q−4e2f2k
1/3
1 k

−1/3
2 − q−2e1f1k

1/3
1 k

2/3
2

)
+(1 − q2)3q−4e2f3f1k

1/3
1 k

−1/3
2

)
X−α1 = iC

(
f1(q

1/2k
2/3
1 k

−2/3
2 + q−1/2k

4/3
1 k

2/3
2 )− (q−1 − q)q−1/2e3f2k

2/3
1 k

1/3
2

)
X−α2 = −iC

(
f3(q

1/2k
−2/3
1 k

2/3
2 + q−1/2k

2/3
1 k

4/3
2 )+ (q−1 − q)q−3/2e1f2k

1/3
1 k

2/3
2

+(q−1 − q)2q−1/2e1f3f1k
1/3
1 k

2/3
2

)
X−α1−α2 = C

(
f2(q

−1/2k
2/3
1 k

4/3
2 + q−3/2k

4/3
1 k

2/3
2 )+ (q−1 − q)q−1/2f3f1k

4/3
1 k

2/3
2

)
.

The normalization factor is

C = (
2(q−1/2 + q1/2)(q−3/2 + q3/2)(q−3 + q−1 − 1 + q + q3)

)−1/2
. (6.7)

It could be absorbed into a different normalization of the quantum Killing form in (5.9).
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The left quantum roots are, using the notationH = ∑
hi Hi ,

lα1(H) = l
(
(q−3/2 + q−1/2) h1 − q1/2 h2

)
lα2(H) = l

(−q1/2 h1 + (q−3/2 + q−1/2) h2
)

lα1+α2(H) = l q−3/2 (h1 + h2)

l = 1
2C

2(q−1/2 + q1/2)(q−3/2 + q3/2)2 .

(6.8)

The negative roots are obtained byq-conjugation according to (5.20). The right roots are
given according to (5.29). The roots are seen to be related by the diagram automorphism
according to (5.32).

The q-conjugation-invariant rootsaα = 1
2(rα + lα) introduced in section 5.6 are

aα1 = 1
2l

(
(q−3/2 + q−1/2 + q1/2 + q3/2) h1 − (q−1/2 + q1/2) h2

)
aα2 = 1

2l
(−(q−1/2 + q1/2) h1 + (q−3/2 + q−1/2 + q1/2 + q3/2) h2

)
aα1+α2 = 1

2l(q
−3/2 + q3/2) (h1 + h2) .

(6.9)

These have the classical properties

aα + aβ = aα+β a−α = −aα (6.10)

i.e. they form a root lattice. This interesting feature, which makes these root systems look
very similar to their classical counterparts, is true forg = an for any n [8], but is not true
for c2, as we will see in the next section.

The Killing form on the Cartan subalgebra is given by the matrixB with entries
Bij = B(Hi,Hj ) = 〈aαi , aαj 〉:

B = b

(
q + q−1 −1

−1 q + q−1

)
b = 1

4

(
(q−1/2 + q1/2)2(q−3/2 + q3/2)2

)
C2 .

(6.11)

The pairwise equality of the elements is due to the diagram automorphism.
Once one has knowledge of the Killing form and of the roots, theHα, which appear as

the result of [Xα ◦X−α], are determined by (5.24). In terms of theHi they read

Hα1 = a
(−q−1/2H1 + (−q1/2 + q3/2)H2

)
Hα2 = a

(
(−q1/2 + q3/2)H1 − q−1/2H2

)
Hα1+α2 = −a q1/2(H1 +H2)

H−α1 = a
(
q1/2H1 + (q−1/2 − q−3/2)H2

)
H−α2 = a

(
(q−1/2 − q−3/2)H1 + q1/2H2

)
H−α1−α2 = a q−1/2(H1 +H2)

a = 2(q−3/2 + q3/2)−1 .

(6.12)

Note that the coefficients in the expansion of theHα are related to those inH−α by q-
conjugation and sign change.

We need give only one of the structure constantsN :

Nα1,α2 = (q−3/2 + q3/2) C . (6.13)
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Through relations (5.25) and (5.30) all the other non-zeroNα,β are related to this (note that
Nα1,α2 = Ñα1,α2):

Nα1,−α1−α2 = −q Nα1,α2 Nα2,α1 = −Nα1,α2 Nα2,−α1−α2 = q Nα1,α2

Nα1+α2,−α1 = q Nα1,α2 Nα1+α2,−α2 = −q Nα1,α2 N−α1,−α2 = Nα1,α2

N−α1,α1+α2 = −q−1Nα1,α2 N−α2,α1+α2 = q−1Nα1,α2 N−α2,−α1 = −Nα1,α2

N−α1−α2,α1 = q−1Nα1,α2 N−α1−α2,α2 = −q−1Nα1,α2 .

(6.14)

This is confirmed by the results of the explicit calculations.
For the structure constantsfij k for the Cartan subalgebra we find

f11
1 = f22

2 = −f (q−2 + q−1 + 1 + q + q2)

f22
1 = f11

2 = −f (q−1 + q)

f12
1 = f21

1 = f12
2 = f21

2 = f

f = 1
2(q

1/2 − q−1/2)(q−1/2 + q1/2)2(q−3/2 + q3/2) C2 .

(6.15)

6.2. Lh(c)2

c2 = sp(4) = b2 = so(5) is the rank-2 Lie algebra with Cartan matrix

a =
( 2 −2

−1 2

)
. (6.16)

It has no diagram automorphisms. With conventions analogous to the previous example

lα1(H) = l
(
(q−2 − 1 + q2)2q−1 h1 − q3 h2

)
lα2(H) = l

(−(q−2 − 1 + q2)q−1 h1 + (q−1 + q)q−2 h2
)

lα1+α2(H) = l
(
(q−1 − q)(q−2 − 1 + q2)q−2 h1 + q−1 h2

)
l2α1+α2(H) = l

(
(q−2 − 1 + q2)q−3 h1

)
l = 1

2(q
−1 + q)3(q−2 − 1 + q2)2C2

(6.17)

aα1(H) = a
(
(q−2 − 1 + q2)2 h1 − (q−2 − 1 + q2) h2

)
aα2(H) = a

(−(q−2 − 1 + q2) h1 + (q−2 + q2) h2
)

aα1+α2(H) = a
(
(q−1 − q)2(q−2 − 1 + q2) h1 + h2

)
a2α1+α2(H) = a

(
(q−2 − 1 + q2)2 h1

)
a = 1

2(q
−1 + q)C2 .

(6.18)

The normalization constant is

C = (
(q−1 + q)2(q−2 + q2)(q−1 + 1 + q)(q−1 − 1 + q)

× (q−2 − 1 + q2)(q−4 − q−2 + 1 − q2 + q4)
)−1/2

. (6.19)
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Note that

a2α1+α2 6= aα1+α2 + aα1 . (6.20)

Thus, in contrast to the case ofg = an, these roots do not form a root lattice†.
The Killing form on the Cartan subalgebra is given by the matrixB with entries

Bij = B(Hi,Hj ) = 〈aαi , aαj 〉:

B = b

 q−2 − 1 + q2 −1

−1
q−2 + q2

q−2 − 1 + q2


b = 1

4

(
(q−1 + q1)4(q−2 − 1 + q2)3

)
C2 .

(6.21)

We find

Nα,β = −(q−1 + q)(q−2 − 1 + q2) nα,β (6.22)

with thenα,β given in the following table. The rows are labelled byα and the columns by
β.

2α1 + α2 α1 + α2 α2 α1 −α1 −α2 −α1 − α2 −2α1 − α2

2α1 + α2 0 0 0 0 −q2 0 q2 0
α1 + α2 0 0 0 q q3 −1 0 −q2

α2 0 0 0 −q2 0 0 1 0
α1 0 −q−1 q−2 0 0 0 −q3 q2

−α1 q−2 −q−3 0 0 0 q2 −q 0
−α2 0 1 0 0 −q−2 0 0 0

−α1 − α2 −q−2 0 −1 q−3 q−1 0 0 0
−2α1 − α2 0 q−2 0 −q−2 0 0 0 0

(6.23)

In view of the relations given in section 5.5 the structure constants are fixed onceNα1,α2

andNα1,α1+α2 are given. Also because of these relations the above table isq-antisymmetric
about the diagonal and antisymmetric about the opposite diagonal.

For the structure constantsfij k for the Cartan subalgebra we find

f11
1 = −f (q−2 − 1 + q2)(q−4 − q−2 + 3 − q2 + q4)

f22
2 = −f (q−2 − q−1 + 1 − q + q2)(q−2 + q−1 + 1 + q + q2)

f11
2 = −f (q−2 + q2)(q−2 − 1 + q2)2

f22
1 = −f (q−2 + q2)(q−2 − 1 + q2)−1

f12
2 = f21

2 = f (q−2 + q2)(q−2 − 1 + q2)

f12
1 = f21

1 = f

f = − 1
2(q

−1 − q)(q−1 + q)3(q−2 − 1 + q) .

(6.24)

† It is tempting to speculate that there may be a relation between the non-closure of the above root triangle and
the non-closure of some mass triangles in the affine Toda theory based onc2.
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The quantum roots corresponding to the positive classical roots are represented by

Hα1 = d
(
(−q−4 + q−2 − 2 + q2)H1 − (q−1 − q)(q−2 + q2)(q−2 − 1 + q2)q−1H2

)
Hα2 = d

(−(q−1 − q)q2H1 − (q−2 − 1 + q2)q−1H2
)

Hα1+α2 = d
(
(−q−2 + 1 − 2q2 − q4)H1 − (q−2 − 1 + q2)H2

)
H2α1+α2 = d

(−(q−2 + q2)q H1 − (q−2 − 1 + q2)q H2
)

d = 2
(
(q−1 + q)(q−2 − 1 + q2)

)−1
.

(6.25)

Again the corresponding expressions for negativeα are obtained byq-conjugating the
coefficients and changing the sign.

7. Discussion

We have shown that it is possible to develop a theory of quantum Lie algebras in terms of an
analogue of Weyl’s canonical form and the resulting quantum roots and structure constants.
The key idea is the concept ofq-conjugation that allows us to exploitq-linear analogues
of the antipode and the Cartan involution in connection with a generalized Killing form.

Objects similar to our quantum Lie algebras have been studied in the framework of
bicovariant differential calculus on quantum groups, see [2] for a very readable review.
There one considers the dual space to the space of left-invariant one-forms, which is a
◦-submodule ofUh(g)†. The caseg = sl3 has been worked out explicitly in [1]. It does
not coincide with our quantum Lie algebraLh(sl3) studied in section 6.1. In particular the
module of [1] is not invariant under the diagram automorphism ofsl3.

The q-conjugation∼ acting onUh(g) which we have defined in definition 2 does not
restrict toLh(g). We can, however, define a differentq-conjugation onLh(g).

Definition 5. q-conjugation onLh(g) is theq-linear mapLh(g) → Lh(g), a 7→ aq which
extends theq-conjugation∼ on C[[h]] by acting as the identity on the basis elementsXα
andHi .

The quantum Lie bracket [a ◦ b] which we have defined through the adjoint action in
Uh(g) is clearly not antisymmetric, i.e. [a ◦ b] 6= −[b ◦ a]. However, we have

Theorem 3. The quantum Lie bracket isq-antisymmetric in the sense that

[aq ◦ bq ] = −[b ◦ a]q ∀ a, b ∈ Lh(g) g = an, c2 . (7.1)

This follows from combining the anti-automorphismχ , described in equation (5.27), with
the q-isomorphismθ̃ : aq = −χ(θ̃(a)).

Our observations in this paper regarding the structure of quantum Lie algebras have
raised many new questions. Among them are the following:

• What is the origin of theq-antisymmetry (7.1) of the quantum Lie bracket? This has
recently been answered in [9].

• What are representations of quantum Lie algebras?

† Rather than working with modules overC[[h]], people treatq = exp(h) as a number and work with vector
spaces overC or R.
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• How can theq-symmetricq-bilinear form 〈 . , . 〉 on the root space defined in (5.34)
be used to define aq-geometry on the root space? What areq-Weyl ‘reflections’ with
respect to such a form? Can they be used to define quantum root systems axiomatically?

• Is there a connection to quantum affine Toda theory and other quantum integrable
models? These questions are under investigation.

Finally, we would like to draw the attention of the reader to the work of Sudbery and
Lyubashenko [32], which has appeared since the completion of this work. They also give
quantum Lie algebras forsl2 and sl3. For sl3, however, they do not impose invariance
under the diagram automorphism.

For further information on quantum Lie algebras visit the quantum Lie algebra home
page on the World Wide Web at http://www.mth.kcl.ac.uk/˜delius/q-lie.html.
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